

Probabilistic models for image processing: applications in vascular surgery

Hugo GANGLOFF

Understand State Understand State U

December 15, 2020

Outline

1 Introduction

2 Pairwise and Triplet Markov Models

3 More general probabilistic models

4 Applications to vascular surgery

5 Conclusion

Outline

1 Introduction

- Medical context
- Probabilistic modeling
- Hidden Markov Models

2 Pairwise and Triplet Markov Models

Image A second and a second a second

4 Applications to vascular surgery

6 Conclusion

Introd	ucti	ion		
0000	000	000		

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Medical context

Cardiovascular diseases

- Human and monetary cost for society
 - $\rightarrow \approx$ 18 millions death worldwide in 2016 (31% of all the year deaths)^1
 - \rightarrow Total cost estimated to 210 billions \in in 2015 in Europe^2

¹https://www.who.int

²http://www.ehnheart.org/

³https://healthmetrics.heart.org/wp-content/uploads/2017/10/ Cardiovascular-Disease-A-Costly-Burden.pdf

Cardiovascular diseases

- Human and monetary cost for society
 - $\rightarrow \approx$ 18 millions death worldwide in 2016 (31% of all the year deaths)^1
 - \rightarrow Total cost estimated to 210 billions \in in 2015 in Europe^2
- Increasing number of affected people: these are diseases linked to old age, sedentarity and bad life hygiene (nutrition, tobacco, ...)³

¹https://www.who.int

²http://www.ehnheart.org/

³https://healthmetrics.heart.org/wp-content/uploads/2017/10/ Cardiovascular-Disease-A-Costly-Burden.pdf

Cardiovascular diseases

 \blacksquare Hypertension, strokes, myocardal infarcts, *etc.* \rightarrow underlying pathology of the arteries: the atherosclerosis

www.openstax.org/details/books/anatomy-and-physiology/

Cardiovascular diseases

 \blacksquare Hypertension, strokes, myocardal infarcts, *etc.* \rightarrow underlying pathology of the arteries: the atherosclerosis

www.openstax.org/details/books/anatomy-and-physiology/

Atheromateous plaques are composed of calcium, lipids, macrophage cells, ...

Vascular surgery

Endovascular surgery

- \rightarrow The patient does not need to be opened: mini-invasive and image guided
- \rightarrow Reduced risks and length of hospital stay

Vascular surgery

Endovascular surgery

- \rightarrow The patient does not need to be opened: mini-invasive and image guided
- \rightarrow Reduced risks and length of hospital stay
- Biomaterials are increasingly used to treat arterial lesions

stent www.cookmedical.com

stentgraft www.crbard.com

vascular prothesis www.goremedical.com

Vascular surgery

Endovascular surgery

- \rightarrow The patient does not need to be opened: mini-invasive and image guided
- \rightarrow Reduced risks and length of hospital stay
- Biomaterials are increasingly used to treat arterial lesions

stent www.cookmedical.com

stentgraft www.crbard.com

vascular prothesis www.goremedical.com

But biomaterials are recent and not well understood!

Introduction

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

The data

CT: Computed Tomography / microCT

Example of input data (2D views)

🗖 Calcifications 💳 Stent 💻 Artifacts

Being able to segment such images could help develop the knowledge of biomaterials!

■ Very little is known about the *in vivo* behaviour of the biomaterials

(Langs et al. 2011) (Klein et al. 2012) (Ohana et al. 2014) (Park et al. 2015) (Perrin et al. 2016) (Chakfé et al. 2017) (Lejay et al. 2018)

- Very little is known about the *in vivo* behaviour of the biomaterials
- Metal segmentation: unaddressed when stent + calcifications + artifacts
 - \rightarrow The most interesting cases cannot be treated automatically
 - \rightarrow Gap to solve in the literature

(Langs et al. 2011) (Klein et al. 2012) (Ohana et al. 2014) (Park et al. 2015) (Perrin et al. 2016) (Chakfé et al. 2017) (Lejay et al. 2018)

- Very little is known about the *in vivo* behaviour of the biomaterials
- Metal segmentation: unaddressed when stent + calcifications + artifacts
 - \rightarrow The most interesting cases cannot be treated automatically
 - \rightarrow Gap to solve in the literature
- Database of biomaterial images are not (publicly) existing
 - ightarrow Data scarcity

 \rightarrow Data gathering and private database creation thanks to Geprovas and CVPath (Renu Virmani, Gaithersburg, MD, USA)

⁽Langs et al. 2011) (Klein et al. 2012) (Ohana et al. 2014) (Park et al. 2015) (Perrin et al. 2016) (Chakfé et al. 2017) (Lejay et al. 2018)

- Very little is known about the *in vivo* behaviour of the biomaterials
- Metal segmentation: unaddressed when stent + calcifications + artifacts
 - \rightarrow The most interesting cases cannot be treated automatically
 - \rightarrow Gap to solve in the literature
- Database of biomaterial images are not (publicly) existing
 - ightarrow Data scarcity

 \rightarrow Data gathering and private database creation thanks to Geprovas and CVPath (Renu Virmani, Gaithersburg, MD, USA)

\rightarrow Missing tools for research on biomaterials

⁽Langs et al. 2011) (Klein et al. 2012) (Ohana et al. 2014) (Park et al. 2015) (Perrin et al. 2016) (Chakfé et al. 2017) (Lejay et al. 2018)

More general probabilistic models

Applications to vascular surgery

Conclusion

About the literature

Probabilistic graphical models

Very active research topic

About the literature

- Very active research topic
- Often used for **unsupervised problems**

- Very active research topic
- Often used for unsupervised problems
- \blacksquare Sparse models \rightarrow fast and exact computations \rightarrow hugeness of medical data

- Very active research topic
- Often used for unsupervised problems
- \blacksquare Sparse models \rightarrow fast and exact computations \rightarrow hugeness of medical data
- \blacksquare Dense models \rightarrow approximating methods \rightarrow model very complex phenomena

- Very active research topic
- Often used for unsupervised problems
- \blacksquare Sparse models \rightarrow fast and exact computations \rightarrow hugeness of medical data
- \blacksquare Dense models \rightarrow approximating methods \rightarrow model very complex phenomena
- \blacksquare Combined with deep learning \rightarrow many top current results in medical imaging

Introduction

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Probabilistic modeling

- Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ be an **undirected** graph
 - \mathcal{S} is the set of *sites*, *nodes* or *vertices*
 - \mathcal{E} is the set of *edges*

Probabilistic graphical models: the undirected case

- Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ be an **undirected** graph
 - \mathcal{S} is the set of *sites*, *nodes* or *vertices*
 - \mathcal{E} is the set of *edges*
- A neighborhood $\mathcal{N}_s, \forall s \in \mathcal{S}$ is the set:

 $\mathcal{N}_{s} = \{s' \in \mathcal{S} \colon (s,s') \in \mathcal{E}\}$

Probabilistic graphical models: the undirected case

- Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ be an **undirected** graph
 - \mathcal{S} is the set of *sites*, *nodes* or *vertices*
 - \mathcal{E} is the set of *edges*
- A neighborhood $\mathcal{N}_s, \forall s \in \mathcal{S}$ is the set:

 $\mathcal{N}_{s} = \{s' \in \mathcal{S} \colon (s,s') \in \mathcal{E}\}$

• A *clique* c is a subset of S such that:

 $orall (s,s') \in c^2, (s,s') \in \mathcal{E}$

Probabilistic graphical models: the undirected case

- Let $\mathcal{G} = (\mathcal{S}, \mathcal{E})$ be an **undirected** graph
 - $\blacksquare \ \mathcal{S}$ is the set of *sites, nodes* or *vertices*
 - \mathcal{E} is the set of *edges*
- A neighborhood $\mathcal{N}_s, \forall s \in \mathcal{S}$ is the set:

 $\mathcal{N}_{s} = \{s' \in \mathcal{S} \colon (s,s') \in \mathcal{E}\}$

• A *clique* c is a subset of S such that:

 $orall (s,s') \in c^2, (s,s') \in \mathcal{E}$

 $\blacksquare \ \mathcal{C}$ is the set of cliques of \mathcal{S}

An undirected graph $S = \{a, b, c, d, e\}$ $c = \{a, b, c, d\}$ is a clique c is a fully connected subset $\mathcal{N}_a = \{b, c, d\}$

Probabilistic graphical models: the directed case

 $\blacksquare \ \mathcal{G}$ is a **directed** graph if edges of \mathcal{E} are directed

- $\blacksquare \ \mathcal{G}$ is a directed graph if edges of \mathcal{E} are directed
- s ∈ S, if there exists (s⁻, s) ∈ E: s is the son of s⁻ and s⁻ is the father of s

- $\blacksquare \ \mathcal{G}$ is a directed graph if edges of \mathcal{E} are directed
- s ∈ S, if there exists (s⁻, s) ∈ E: s is the son of s⁻ and s⁻ is the father of s
- $\mathcal{P}(s)$ is the set of fathers of s

- $\blacksquare \ \mathcal{G}$ is a directed graph if edges of \mathcal{E} are directed
- s ∈ S, if there exists (s⁻, s) ∈ E: s is the son of s⁻ and s⁻ is the father of s
- $\mathcal{P}(s)$ is the set of fathers of s
- A root node is a node without any father.
 S_R is the set of roots of S.

- $\blacksquare \ \mathcal{G}$ is a directed graph if edges of \mathcal{E} are directed
- s ∈ S, if there exists (s⁻, s) ∈ E: s is the son of s⁻ and s⁻ is the father of s
- $\mathcal{P}(s)$ is the set of fathers of s
- A root node is a node without any father.
 S_R is the set of roots of S.
- \bar{S} is the set of nodes with at least one father

Probabilistic graphical models: the directed case

- $\blacksquare \ \mathcal{G}$ is a directed graph if edges of \mathcal{E} are directed
- s ∈ S, if there exists (s⁻, s) ∈ E: s is the son of s⁻ and s⁻ is the father of s
- $\mathcal{P}(s)$ is the set of fathers of s
- A root node is a node without any father.
 S_R is the set of roots of S.
- $\bar{\mathcal{S}}$ is the set of nodes with at least one father
- Directed cycles and semi cycles:

 $\{a, b, c\}$ is a cycle $\{a, b, c\}$ is a semi cycle

- $\blacksquare \mathcal{G}$ is a **directed** graph if edges of \mathcal{E} are directed
- $s \in S$, if there exists $(s^-, s) \in \mathcal{E}$: s is the son of $s^$ and s^{-} is the father of s
- $\square \mathcal{P}(s)$ is the set of fathers of s
- A *root* node is a node without any father. $\mathcal{S}_{\mathcal{P}}$ is the set of roots of \mathcal{S} .
- $\mathbf{\bar{S}}$ is the set of nodes with at least one father
- Directed cycles and semi cycles:

 $\{a, b, c\}$ is a cycle $\{a, b, c\}$ is a semi cycle

A directed graph $\mathcal{S} = \{a, c, d, e, g, h\}$ $\mathcal{\bar{S}} = \{d, e, g, h\}$ a and c are root nodes $\mathcal{P}(d) = \{a, e, g\}$

Probabilistic graphical models: random variables and graphs

• Associate a random variable X_s (or a random vector...) at every site s of $\mathcal G$

 \rightarrow How to form the joint probability distribution $p(\mathbf{x}), \mathbf{x} = (x_s)_{s \in S}$?

Probabilistic graphical models: random variables and graphs

- Associate a random variable X_s (or a random vector...) at every site s of $\mathcal G$
 - \rightarrow How to form the joint probability distribution $p(\mathbf{x}), \mathbf{x} = (x_s)_{s \in S}$?
- In the undirected case:

Probabilistic graphical models: random variables and graphs

- Associate a random variable X_s (or a random vector...) at every site s of $\mathcal G$
 - \rightarrow How to form the joint probability distribution $p(\mathbf{x}), \mathbf{x} = (x_s)_{s \in S}$?
- In the undirected case:
 - \rightarrow unnormalized conditional probabilities: $\tilde{p}(x_s | \mathbf{x}_{N_s}), \forall s \in \bar{S}$:

$$p(m{x}) = rac{1}{Z} \prod_{s \in \mathcal{S}} ilde{p}(x_s | m{x}_{\mathcal{N}_s}), ext{ with } Z ext{ a normalization constant}$$
Probabilistic graphical models: random variables and graphs

- Associate a random variable X_s (or a random vector...) at every site s of $\mathcal G$
 - \rightarrow How to form the joint probability distribution $p(\mathbf{x}), \mathbf{x} = (x_s)_{s \in S}$?
- In the undirected case:
 - \rightarrow unnormalized conditional probabilities: $\tilde{\rho}(x_s|\mathbf{x}_{\mathcal{N}_s}), \forall s \in \bar{\mathcal{S}}$:

$$p(m{x}) = rac{1}{Z} \prod_{s \in \mathcal{S}} ilde{
ho}(x_s | m{x}_{\mathcal{N}_s}), ext{ with } Z ext{ a normalization constant}$$

 \rightarrow (equivalently) an energy through potential functions $E(\mathbf{x}) = \sum_{c \in C} \psi(\mathbf{x}_c)$:

$$p(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$$
 (a Gibbs distribution)

Probabilistic graphical models: random variables and graphs

- Associate a random variable X_s (or a random vector...) at every site s of ${\mathcal G}$
 - \rightarrow How to form the joint probability distribution $p(\mathbf{x}), \mathbf{x} = (x_s)_{s \in S}$?
- In the undirected case:
 - \rightarrow unnormalized conditional probabilities: $\tilde{\rho}(x_s|\mathbf{x}_{\mathcal{N}_s}), \forall s \in \bar{\mathcal{S}}$:

$$p(m{x}) = rac{1}{Z} \prod_{s \in \mathcal{S}} ilde{
ho}(x_s | m{x}_{\mathcal{N}_s}), ext{ with } Z ext{ a normalization constant}$$

 \rightarrow (equivalently) an energy through potential functions $E(\mathbf{x}) = \sum_{c \in C} \psi(\mathbf{x}_c)$:

$$p(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$$
 (a Gibbs distribution)

In the directed case:

Probabilistic graphical models: random variables and graphs

- Associate a random variable X_s (or a random vector...) at every site s of $\mathcal G$
 - \rightarrow How to form the joint probability distribution $p(\mathbf{x}), \mathbf{x} = (x_s)_{s \in S}$?
- In the undirected case:
 - \rightarrow unnormalized conditional probabilities: $\tilde{p}(x_s | \mathbf{x}_{\mathcal{N}_s}), \forall s \in \bar{\mathcal{S}}$:

 $p(\mathbf{x}) = rac{1}{Z} \prod_{s \in \mathcal{S}} ilde{p}(x_s | \mathbf{x}_{\mathcal{N}_s}), ext{ with } Z ext{ a normalization constant}$

 \rightarrow (equivalently) an energy through potential functions $E(\mathbf{x}) = \sum_{c \in C} \psi(\mathbf{x}_c)$:

$$p(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$$
 (a Gibbs distribution)

In the directed case:

 \rightarrow local conditional probabilities: $p(x_s | \boldsymbol{x}_{\mathcal{P}(s)}), \forall s \in \bar{S} \text{ and } p(x_r), \forall r \in S_{\mathcal{R}}$:

$$p(\mathbf{x}) = \prod_{r \in S_{\mathcal{R}}} p(x_r) \prod_{s \in \bar{S}} p(x_s | \mathbf{x}_{\mathcal{P}_s})$$

More general probabilistic models

Applications to vascular surgery

Conclusion

Probabilistic graphical models: probabilistic setting

Notations:

■ Vectors: **x** / Scalars: x

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

- Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$
- $X = (X_s)_{s \in S}$ with value in $\Omega^{|S|} \to$ the hidden variables.

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

- Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$
- $X = (X_s)_{s \in S}$ with value in $\Omega^{|S|} \to$ the hidden variables.
- $\mathbf{Y} = (Y_s)_{s \in S}$ with value in $\mathbb{R}^{|S|} \to$ the observed variables.

Probabilistic graphical models: probabilistic setting

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

- Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$
- $X = (X_s)_{s \in S}$ with value in $\Omega^{|S|} \to$ the hidden variables.
- $\mathbf{Y} = (Y_s)_{s \in S}$ with value in $\mathbb{R}^{|S|} \to$ the observed variables.
- Segmentation criteria: \rightarrow Maximum A Posteriori (MAP)

 \rightarrow Maximum Posterior Mode (MPM)

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Hidden Markov Models

 Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:
 - Hidden and observed random variables

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:
 - Hidden and observed random variables
 - Generative models $\rightarrow p(\mathbf{x}, \mathbf{y})$ is modeled

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:
 - Hidden and observed random variables
 - Generative models $\rightarrow p(\mathbf{x}, \mathbf{y})$ is modeled
 - **X** is a Markovian process and $p(\mathbf{y}|\mathbf{x}) = \prod_{s \in S} p(y_s|x_s)$

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Hidden Markov Models: classical models

Hidden Markov Field (HMF) (Geman et al. 1984)

 $Y_s \square$

Xs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Hidden Markov Models: classical models

Hidden Markov Field (HMF) (Geman et al. 1984)

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Hidden Markov Models: classical models

Hidden Markov Field (HMF) (Geman et al. 1984)

$$p(m{x})$$
 is a Markov field $p(m{x},m{y}) = rac{1}{Z} \prod_{s\in\mathcal{S}} ilde{p}(x_s|m{x}_{\mathcal{N}_s}) ilde{p}(y_s|x_s)$

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

 Y_s

Xc

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Hidden Markov Models: classical models

Hidden Markov Field (HMF) (Geman et al. 1984)

$$p(\mathbf{x})$$
 is a Markov field
 $p(\mathbf{x}, \mathbf{y}) = rac{1}{Z} \prod_{s \in S} \tilde{p}(x_s | \mathbf{x}_{\mathcal{N}_s}) \tilde{p}(y_s | x_s)$

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

 $p(\mathbf{x})$ is a Markov chain

$$p(\boldsymbol{x}, \boldsymbol{y}) = p(x_r)p(y_r|x_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s|x_{s^-})p(y_s|x_s)$$

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Hidden Markov Models: classical models

Hidden Markov Field (HMF) (Geman et al. 1984)

$$p(oldsymbol{x})$$
 is a Markov field $p(oldsymbol{x},oldsymbol{y}) = rac{1}{Z} \prod_{s \in \mathcal{S}} ilde{p}(x_s | oldsymbol{x}_{\mathcal{N}_s}) ilde{p}(y_s | x_s)$

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

 $p(\mathbf{x})$ is a Markov chain

$$\begin{array}{c} Y_s \\ \uparrow \\ X_s \end{array} \xrightarrow{\uparrow} \\ \hline \end{array} \xrightarrow{\uparrow} \\ \hline \end{array} \xrightarrow{\uparrow} \\ \hline \end{array}$$

$$p(\boldsymbol{x},\boldsymbol{y}) = p(x_r)p(y_r|x_r)\prod_{s\in\bar{\mathcal{S}}}p(x_s|x_{s^-})p(y_s|x_s)$$

Hidden Markov Tree (HMT) (Laferté et al. 2000)

 Y_s

Xc

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Hidden Markov Models: classical models

Hidden Markov Field (HMF) (Geman et al. 1984)

$$p(oldsymbol{x})$$
 is a Markov field $p(oldsymbol{x},oldsymbol{y}) = rac{1}{Z} \prod_{s \in \mathcal{S}} ilde{p}(x_s | oldsymbol{x}_{\mathcal{N}_s}) ilde{p}(y_s | x_s)$

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

 $p(\mathbf{x})$ is a Markov chain

$$p(\boldsymbol{x}, \boldsymbol{y}) = p(x_r)p(y_r|x_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s|x_{s^-})p(y_s|x_s)$$

Hidden Markov Tree (HMT) (Laferté et al. 2000)

 $p(\mathbf{x})$ is a Markov tree $p(\mathbf{x}, \mathbf{y})
ightarrow$ same as an HMC

 Y_s

Xc

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Hidden Markov Models: classical models

Hidden Markov Field (HMF) (Geman et al. 1984)

$$p(\mathbf{x})$$
 is a Markov field $p(\mathbf{x}, \mathbf{y}) = rac{1}{Z} \prod_{s \in S} \tilde{p}(x_s | \mathbf{x}_{\mathcal{N}_s}) \tilde{p}(y_s | x_s)$

inference \rightarrow approximate computations

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

 $p(\mathbf{x})$ is a Markov chain

$$p(\mathbf{x}, \mathbf{y}) = p(x_r)p(y_r|x_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s|x_{s-})p(y_s|x_s)$$

 $\mathsf{inference} \to \mathbf{direct} \ \mathbf{computations}$

Hidden Markov Tree (HMT) (Laferté et al. 2000)

 $p(\mathbf{x})$ is a Markov tree $p(\mathbf{x}, \mathbf{y}) \rightarrow$ same as an HMC inference \rightarrow direct computations

Outline

Introduction

2 Pairwise and Triplet Markov Models

- Extension of Hidden Markov Models
- Gaussian Pairwise Markov Fields 🏂
- Spatial Triplet Markov Trees **\$**

Image And A manual Antiparties and A manual A manua A manual A manual A manual A

(4) Applications to vascular surgery

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Extension of Hidden Markov Models

Motivations

 $\rightarrow\,$ Strong restrictions classically made in HMMs:

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov field / chain / tree

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov field / chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov field / chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

Motivations

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov field / chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

 \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov field / chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - X is constrained to be a Markov field / chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- $\rightarrow\,$ Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)
 - Conservation of the good properties of inference

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - **X** is constrained to be a Markov field / chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)
 - Conservation of the good properties of inference
 - Naturally encompass extended HMMs models from the literature
Motivations

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - X is constrained to be a Markov field / chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)
 - Conservation of the good properties of inference
 - Naturally encompass extended HMMs models from the literature
 - \blacksquare Triplet models integrate auxiliary random variables \rightarrow link with deep learning models

Pairwise Markov Field (PMF) (Pieczynski and Tebbache 2000)

 $p(\mathbf{x}, \mathbf{y})$ is a Markov field

$$p(\boldsymbol{x}, \boldsymbol{y}) = rac{1}{Z} \prod_{s \in S} \tilde{p}(x_s, y_s | \boldsymbol{x}_{\mathcal{N}_s}, \boldsymbol{y}_{\mathcal{N}_s})$$

Pairwise Markov Chain (Pieczynski 2003)

 $p(\mathbf{x}, \mathbf{y})$ is a Markov chain

$$p(\boldsymbol{x},\boldsymbol{y}) = p(x_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, y_s | x_{s^-}, y_{s^-})$$

Pairwise Markov Tree (Pieczynski 2002)

 $p(\mathbf{x}, \mathbf{y})$ is a Markov tree $p(\mathbf{x}, \mathbf{y}) \rightarrow$ same as a Pairwise Markov Chain Pairwise and Triplet Markov Models

More general probabilistic models

Pairwise and triplet assumptions

Triplet Markov Field (Benboudjema et al. 2005)

Y_s Vs

 X_s, V_s, Y_s

$$p(\mathbf{x}, \mathbf{v}, \mathbf{y})$$
 is a Markov field

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = \frac{1}{Z} \prod_{s \in S} \tilde{p}(x_s, v_s, y_s | \boldsymbol{x}_{\mathcal{N}_s}, \boldsymbol{v}_{\mathcal{N}_s}, \boldsymbol{y}_{\mathcal{N}_s})$$

Triplet Markov Chain (Lanchantin et al. 2008)

 $p(\mathbf{x}, \mathbf{v}, \mathbf{y})$ is a Markov chain

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, v_r, y_r) \prod_{s \in \bar{S}} p(x_s, v_s, y_s | x_{s^-}, v_{s^-}, y_{s^-})$$

Triplet Markov Tree (TMT) (Courbot et al. 2018)

 $p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y})$ is a Markov tree $p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) \rightarrow$ same as a Triplet Markov Chain Conclusion

- In pairwise models:
 - Neither $p(\mathbf{x})$ nor $p(\mathbf{y})$ are necessarily Markovian distributions

In pairwise models:

- Neither $p(\mathbf{x})$ nor $p(\mathbf{y})$ are necessarily Markovian distributions
- But $p(\mathbf{x}|\mathbf{y})$ and $p(\mathbf{y}|\mathbf{x})$ are Markovian distributions
 - \rightarrow Inference can be done as in classical HMMs

- In pairwise models:
 - Neither $p(\mathbf{x})$ nor $p(\mathbf{y})$ are necessarily Markovian distributions
 - But $p(\mathbf{x}|\mathbf{y})$ and $p(\mathbf{y}|\mathbf{x})$ are Markovian distributions
 - \rightarrow Inference can be done as in classical HMMs
- In triplet models:
 - Neither p(x), p(y), p(v), p(x, y), p(y, v), nor p(x, v) are necessarily Markovian distributions

- In pairwise models:
 - Neither $p(\mathbf{x})$ nor $p(\mathbf{y})$ are necessarily Markovian distributions
 - But $p(\mathbf{x}|\mathbf{y})$ and $p(\mathbf{y}|\mathbf{x})$ are Markovian distributions
 - \rightarrow Inference can be done as in classical HMMs
- In triplet models:
 - Neither p(x), p(y), p(v), p(x, y), p(y, v), nor p(x, v) are necessarily Markovian distributions
 - But $p(\mathbf{x}, \mathbf{v} | \mathbf{y})$ (and the others...) are Markovian distributions
 - \rightarrow Inference can be done as in classical HMMs
 - \rightarrow Original hidden states:

$$p(oldsymbol{x}|oldsymbol{y}) = \sum_{oldsymbol{v}} p(oldsymbol{x},oldsymbol{v}|oldsymbol{y})$$

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Gaussian Pairwise Markov Fields 😕

More general probabilistic models

Applications to vascular surgery

Conclusion

Gaussian Pairwise Markov Fields: motivation

 \blacksquare Gaussian Markov Random Fields (GMRF) \rightarrow a model for correlated noise

$$p(\mathbf{y}) = rac{\exp\left(rac{1}{2}\mathbf{y}^T Q \mathbf{y}
ight)}{\sqrt{(2\pi)^N \det(Q^{-1})}},$$

 $Q = \Sigma^{-1}$: precision matrix, Σ : covariance matrix.

Examples of realizations **y** of GMRF

More general probabilistic models

Applications to vascular surgery

Conclusion

Gaussian Pairwise Markov Fields: motivation

Gaussian Markov Random Fields (GMRF) \rightarrow a model for correlated noise

$$p(\mathbf{y}) = rac{\exp\left(rac{1}{2}\mathbf{y}^T Q \mathbf{y}
ight)}{\sqrt{(2\pi)^N \det(Q^{-1})}}.$$

 $Q = \Sigma^{-1}$: precision matrix, Σ : covariance matrix.

Examples of realizations **y** of GMRF

PMF models can integrate GMRFs:

All possible direct dependencies

More general probabilistic models

Applications to vascular surgery

Conclusion

Gaussian Pairwise Markov Fields (GPMFs) 🕏

Definition: A GPMF is a PMF where p(y|x) is a GMRF.

Gaussian Pairwise Markov Fields (GPMFs) 🕏

- **Definition:** A GPMF is a PMF where p(y|x) is a GMRF.
- **Property:** (x, y) is a GPMF (w.r.t. the neighborhood \mathcal{N}) *iff*.

$$p(\boldsymbol{x}, \boldsymbol{y}) = rac{1}{Z} \exp\left(-E(\boldsymbol{x}, \boldsymbol{y})
ight), ext{ with } E(\boldsymbol{x}, \boldsymbol{y}) = \sum_{n=1}^{2} \sum_{\boldsymbol{c} \in \mathcal{C}_n} ar{V}_n(\boldsymbol{y}_{\boldsymbol{c}}, \boldsymbol{x}_{\boldsymbol{c}}) + \sum_{n=1}^{|\mathcal{N}|} \sum_{\boldsymbol{c} \in \mathcal{C}_n} ar{V}_n(\boldsymbol{x}_{\boldsymbol{c}})$$

Gaussian Pairwise Markov Fields (GPMFs) 🕏

- **Definition:** A GPMF is a PMF where p(y|x) is a GMRF.
- **Property:** (x, y) is a GPMF (w.r.t. the neighborhood \mathcal{N}) *iff*.

$$p(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{Z} \exp\left(-E(\boldsymbol{x},\boldsymbol{y})\right), \text{ with } E(\boldsymbol{x},\boldsymbol{y}) = \sum_{n=1}^{2} \sum_{\boldsymbol{c} \in \mathcal{C}_{n}} \bar{V}_{n}(\boldsymbol{y}_{\boldsymbol{c}},\boldsymbol{x}_{\boldsymbol{c}}) + \sum_{n=1}^{|\mathcal{N}|} \sum_{\boldsymbol{c} \in \mathcal{C}_{n}} \tilde{V}_{n}(\boldsymbol{x}_{\boldsymbol{c}})$$

with the constraints:

- $\bar{V}_n(y_c, x_c)$ is a positive semidefinite quadratic form in the y variable.
- $\tilde{V}_n(\mathbf{x_c})$ are potential functions where the $\mathbf{y_c}$ variables have no role.

See sketch of proof

Gaussian Pairwise Markov Fields (GPMFs) 🕏

- **Definition:** A GPMF is a PMF where p(y|x) is a GMRF.
- **Property:** (x, y) is a GPMF (w.r.t. the neighborhood \mathcal{N}) *iff*.

$$p(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{Z} \exp\left(-E(\boldsymbol{x},\boldsymbol{y})\right), \text{ with } E(\boldsymbol{x},\boldsymbol{y}) = \sum_{n=1}^{2} \sum_{\boldsymbol{c} \in \mathcal{C}_{n}} \bar{V}_{n}(\boldsymbol{y}_{\boldsymbol{c}},\boldsymbol{x}_{\boldsymbol{c}}) + \sum_{n=1}^{|\mathcal{N}|} \sum_{\boldsymbol{c} \in \mathcal{C}_{n}} \tilde{V}_{n}(\boldsymbol{x}_{\boldsymbol{c}})$$

with the constraints:

- $\bar{V}_n(y_c, x_c)$ is a positive semidefinite quadratic form in the y variable.
- $\tilde{V}_n(\mathbf{x_c})$ are potential functions where the $\mathbf{y_c}$ variables have no role.
- See sketch of proof
 - GPMFs are introduced in (Gangloff et al., submitted)

Examples of GPMFs

• Let us define a GPMF model:

$$E(\mathbf{x}, \mathbf{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{\mathbf{x}s}^{\mathbf{x}_{s'}} \beta \left(1 - \frac{1}{2} (\bar{y}_s - \bar{y}_{s'})^2\right) + \sum_{s \in \mathcal{S}} \sum_{\substack{s' \in \\ \mathcal{N}_s \cup \{s\}}} \left[\mathbb{1}_{[s' \in \mathcal{N}_s^2]} \frac{1}{2} Q_{s,s'} \bar{y}_s \bar{y}_{s'}\right]$$

Let us define a GPMF model:

$$E(\boldsymbol{x}, \boldsymbol{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{xs}^{x_{s'}} \beta \left(1 - \frac{1}{2} (\bar{y}_s - \bar{y}_{s'})^2\right) + \sum_{s \in \mathcal{S}} \sum_{\substack{s' \in \\ \mathcal{N}_s \cup \{s\}}} \left[\mathbb{1}_{[s' \in \mathcal{N}_s^2]} \frac{1}{2} Q_{s,s'} \bar{y}_s \bar{y}_{s'}\right]$$

• It obeys the GPMF definition.

• Let us define a GPMF model:

$$E(\boldsymbol{x},\boldsymbol{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{\boldsymbol{x}s'}^{\boldsymbol{x}s'} \beta \left(1 - \frac{1}{2} (\bar{y}_s - \bar{y}_{s'})^2\right) + \sum_{s \in \mathcal{S}} \sum_{\substack{s' \in \\ \mathcal{N}_s \cup \{s\}}} \left[\mathbb{1}_{[s' \in \mathcal{N}_s^2]} \frac{1}{2} Q_{s,s'} \bar{y}_s \bar{y}_{s'}\right]$$

- It obeys the GPMF definition.
- Direct dependencies in GPMFs:

• Let us define a GPMF model:

$$E(\boldsymbol{x}, \boldsymbol{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{xs}^{x_{s'}} \beta \left(1 - \frac{1}{2} (\bar{y}_s - \bar{y}_{s'})^2\right) + \sum_{s \in \mathcal{S}} \sum_{\substack{s' \in \\ \mathcal{N}_s \cup \{s\}}} \left[\mathbb{1}_{[s' \in \mathcal{N}_s^2]} \frac{1}{2} Q_{s,s'} \bar{y}_s \bar{y}_{s'}\right]$$

- It obeys the GPMF definition.
- Direct dependencies in GPMFs:

• Neither $p(\mathbf{x})$ nor $p(\mathbf{y})$ are Markovian distributions!

Let us define the Potts-GMRF (P-GMRF) model (Gangloff et al. 2019):

$$E(\mathbf{x}, \mathbf{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{x_s}^{x_{s'}} \beta + \sum_{s \in \mathcal{S}} \sum_{\substack{s' \in \\ \mathcal{N}_s \cup \{s\}}} \left[\mathbb{1}_{[s' \in \mathcal{N}_s^2]} \frac{1}{2} Q_{s,s'} \bar{y}_s \bar{y}_{s'} \right]$$

Let us define the Potts-GMRF (P-GMRF) model (Gangloff et al. 2019):

$$E(\mathbf{x}, \mathbf{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{\mathbf{x}_s}^{\mathbf{x}_{s'}} \beta + \sum_{s \in \mathcal{S}} \sum_{\substack{s' \in \\ \mathcal{N}_s \cup \{s\}}} \left[\mathbb{1}_{[s' \in \mathcal{N}_s^2]} \frac{1}{2} Q_{s,s'} \bar{y}_s \bar{y}_{s'} \right]$$

It also obeys the GPMF definition.

Let us define the Potts-GMRF (P-GMRF) model (Gangloff et al. 2019):

$$E(\mathbf{x}, \mathbf{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{\mathbf{x}_s}^{\mathbf{x}_{s'}} \beta + \sum_{s \in \mathcal{S}} \sum_{\substack{s' \in \\ \mathcal{N}_s \cup \{s\}}} \left[\mathbb{1}_{[s' \in \mathcal{N}_s^2]} \frac{1}{2} Q_{s,s'} \bar{y}_s \bar{y}_{s'} \right]$$

- It also obeys the GPMF definition.
- Fewer direct dependencies in Potts-GMRFs:

Let us define the Potts-Independent Noise (P-IN) model:

$$E(\mathbf{x}, \mathbf{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{x_s}^{x_{s'}} \beta + \sum_{s \in \mathcal{S}} \left[\log(\sqrt{2\pi\sigma^2}) - \frac{\bar{y}_s^2}{2\sigma^2} \right]$$

Examples of GPMFs

Let us define the Potts-Independent Noise (P-IN) model:

$$E(\mathbf{x}, \mathbf{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{x_s}^{x_{s'}} \beta + \sum_{s \in \mathcal{S}} \left[\log(\sqrt{2\pi\sigma^2}) - \frac{\bar{y}_s^2}{2\sigma^2} \right]$$

Classical HMF-IN model which is also a GPMF!

Examples of GPMFs

Let us define the Potts-Independent Noise (P-IN) model:

$$E(\mathbf{x}, \mathbf{y}) = \sum_{s \in \mathcal{S}} \sum_{s' \in \mathcal{N}_s} -\mathbb{1}_{[s' \in \mathcal{N}_s^1]} \delta_{x_s}^{x_{s'}} \beta + \sum_{s \in \mathcal{S}} \left[\log(\sqrt{2\pi\sigma^2}) - \frac{\bar{y}_s^2}{2\sigma^2} \right]$$

- Classical HMF-IN model which is also a GPMF!
- Even fewer direct dependencies:

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

GPMF models: numerical applications

Error rate in segmentation for varying correlated noise levels

 \rightarrow The GPMF model always gives the best results

See synthetic images

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Spatial Triplet Markov Trees 🌲

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Spatial Triplet Markov Trees (STMTs)

Distribution of STMTs (Gangloff et al. 2020) (Gangloff et al., submitted):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

Spatial Triplet Markov Trees (STMTs) **‡**

Distribution of STMTs (Gangloff et al. 2020) (Gangloff et al., submitted):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

• Special design of \boldsymbol{V} to improve spatial correlations in the classical HMT model. $\forall s \in \mathcal{S} : \boldsymbol{V}_s = (V^{\leftarrow}, V^{\leftarrow}, V^{\uparrow}, V^{
ightarrow}, V^{
ightarrow}, V^{\downarrow}, V^{\downarrow}, V^{\checkmark})$

Spatial Triplet Markov Trees (STMTs) **‡**

Distribution of STMTs (Gangloff et al. 2020) (Gangloff et al., submitted):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

- Special design of \boldsymbol{V} to improve spatial correlations in the classical HMT model. $\forall s \in S : \boldsymbol{V}_s = (V^{\leftarrow}, V^{\leftarrow}, V^{\uparrow}, V^{
 ightarrow}, V^{
 ightarrow}, V^{\downarrow}, V^{\checkmark})$
- Quadtrees: each site s^- has four sons $(s^{NW}, s^{NE}, s^{SE}, s^{SW})$ (except for last layer):

Spatial Triplet Markov Trees (STMTs)

Distribution of STMTs (Gangloff et al. 2020) (Gangloff et al., submitted):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{S}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

- Special design of \boldsymbol{V} to improve spatial correlations in the classical HMT model. $\forall s \in S : \boldsymbol{V}_s = (V^{\leftarrow}, V^{\leftarrow}, V^{\uparrow}, V^{
 ightarrow}, V^{
 ightarrow}, V^{\downarrow}, V^{\checkmark})$
- Quadtrees: each site s^- has four sons $(s^{NW}, s^{NE}, s^{SE}, s^{SW})$ (except for last layer):

• We consider only observations Y_s at the finer resolution.

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Propagation of spatial information: the same color indicates the same probability law

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Designing the auxiliary process in STMTs

Propagation of spatial information: the same color indicates the same probability law

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

STMTs: numerical applications

■ Ising-like potentials to propagate spatial homogeneity similarly to Markov fields:

$$p(x_s|x_{s^-}, \boldsymbol{v}_{s^-}) = \frac{1}{Z} \exp\left(\alpha \delta_{x_s}^{x_{s^-}} + \sum_{v_{s^-} \in \boldsymbol{v}_{s^-}} \beta \delta_{x_s}^{v_{s^-}}\right), \text{ with } (\alpha, \beta) \in \mathbb{R}^2_+.$$

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

STMTs: numerical applications

■ Ising-like potentials to propagate spatial homogeneity similarly to Markov fields:

$$p(x_{s}|x_{s^{-}}, \boldsymbol{v}_{s^{-}}) = \frac{1}{Z} \exp\left(\alpha \delta_{x_{s}}^{x_{s^{-}}} + \sum_{\boldsymbol{v}_{s^{-}} \in \boldsymbol{v}_{s^{-}}} \beta \delta_{x_{s}}^{\boldsymbol{v}_{s^{-}}}\right), \text{ with } (\alpha, \beta) \in \mathbb{R}_{+}^{2}.$$

• Comparing HMFs, HMTs and STMTs in unsupervised segmentation:

Error rate in unsupervised segmentation function of the noise level \rightarrow STMTs greatly improve HMT results

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

To conclude the section

Pairwise and Triplet Markov Models

 \blacksquare Generalizations of HMMs \rightarrow increased modeling possibilities

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

To conclude the section

Pairwise and Triplet Markov Models

- \blacksquare Generalizations of HMMs \rightarrow increased modeling possibilities
- Inference not harder than in HMMs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

To conclude the section

Pairwise and Triplet Markov Models

- \blacksquare Generalizations of HMMs \rightarrow increased modeling possibilities
- Inference not harder than in HMMs
- Potential of auxiliary random variables

Outline

Introduction

2 Pairwise and Triplet Markov Models

3 More general probabilistic models

- Going beyond Hidden Markov Models
- Spatial Bayes Networks (SBNs)
- Gaussian fully-connected Conditional Random Fields (fcCRFs)

Applications to vascular surgery

6 Conclusion

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Going beyond Hidden Markov Models

Towards more intricate probabilistic models

Probabilistic models with richer correlations:

Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)

Towards more intricate probabilistic models

Probabilistic models with richer correlations:

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - \rightarrow Defined on a general directed acyclic graph (Bayesian network)

SBN (3 layers)

Towards more intricate probabilistic models

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - → Defined on a general directed acyclic graph (Bayesian network)
 - A Semi-cycles are created

SBN (3 layers)

Towards more intricate probabilistic models

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - \rightarrow Defined on a general directed acyclic graph (Bayesian network)
 - A Semi-cycles are created
- fully-connected Conditional Random Fields (fcCRFs) (Krähenbühl et al. 2011)

SBN (3 layers)

Towards more intricate probabilistic models

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - \rightarrow Defined on a general directed acyclic graph (Bayesian network)
 - A Semi-cycles are created
- fully-connected Conditional Random Fields (fcCRFs) (Krähenbühl et al. 2011)
 - $\rightarrow\,$ Defined on a fully-connected undirected graph

SBN (3 layers)

fcCRF

Towards more intricate probabilistic models

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - \rightarrow Defined on a general directed acyclic graph (Bayesian network)
 - A Semi-cycles are created
- fully-connected Conditional Random Fields (fcCRFs) (Krähenbühl et al. 2011)
 - $\rightarrow\,$ Defined on a fully-connected undirected graph
 - ▲ Too large neighborhoods

SBN (3 layers)

fcCRF

Towards more intricate probabilistic models

Probabilistic models with richer correlations:

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - \rightarrow Defined on a general directed acyclic graph (Bayesian network)
 - A Semi-cycles are created
- fully-connected Conditional Random Fields (fcCRFs) (Krähenbühl et al. 2011)
 - $\rightarrow\,$ Defined on a fully-connected undirected graph
 - ▲ Too large neighborhoods

Greater generality makes inference much harder:

SBN (3 layers)

fcCRF

Towards more intricate probabilistic models

Probabilistic models with richer correlations:

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - \rightarrow Defined on a general directed acyclic graph (Bayesian network)
 - A Semi-cycles are created
- fully-connected Conditional Random Fields (fcCRFs) (Krähenbühl et al. 2011)
 - $\rightarrow\,$ Defined on a fully-connected undirected graph
 - ▲ Too large neighborhoods

Greater generality makes inference much harder:

No exact formulas but iterative methods...

SBN (3 layers)

fcCRF

Towards more intricate probabilistic models

Probabilistic models with richer correlations:

- Spatial Bayes Networks (SBNs) (Gangloff et al. 2020)
 - \rightarrow Defined on a general directed acyclic graph (Bayesian network)
 - A Semi-cycles are created
- fully-connected Conditional Random Fields (fcCRFs) (Krähenbühl et al. 2011)
 - $\rightarrow\,$ Defined on a fully-connected undirected graph
 - ▲ Too large neighborhoods

Greater generality makes inference much harder:

- No exact formulas but iterative methods...
- ... that (in general) approximate the results

SBN (3 layers)

fcCRF

Variational Inference (VI) (Blei et al. 2017) \rightarrow approximate inference when the true posterior $p(\mathbf{x}|\mathbf{y})$ is intractable

It is approximated by a simpler variational distribution $q(\mathbf{x})$ (from a family Q)

Variational Inference (VI) (Blei et al. 2017) \rightarrow approximate inference when the true posterior $p(\mathbf{x}|\mathbf{y})$ is intractable

- It is approximated by a simpler variational distribution $q(\mathbf{x})$ (from a family Q)
- We solve the optimization problem:

$$q^*(\mathbf{x}) = \operatorname{argmin}_{q(\mathbf{x}) \in \mathcal{Q}} \mathbb{KL}(q(\mathbf{x}) || p(\mathbf{x} | \mathbf{y}))$$

with:

$$\mathbb{KL}\big(q(\boldsymbol{x})||\boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y})\big) = \mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[\log q(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[\log \boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y})]$$

Variational Inference (VI) (Blei et al. 2017) \rightarrow approximate inference when the true posterior $p(\mathbf{x}|\mathbf{y})$ is intractable

- It is approximated by a simpler variational distribution $q(\mathbf{x})$ (from a family Q)
- We solve the optimization problem:

$$q^*(\mathbf{x}) = \operatorname{argmin}_{q(\mathbf{x}) \in \mathcal{Q}} \mathbb{KL}(q(\mathbf{x}) || p(\mathbf{x} | \mathbf{y}))$$

with:

$$\mathbb{KL}\big(q(\boldsymbol{x})||p(\boldsymbol{x}|\boldsymbol{y})\big) = \mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[\log q(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[\log p(\boldsymbol{x}|\boldsymbol{y})]$$

• Note that this is equivalent to maximizing the *Evidential Lower BOund* (ELBO):

$$\textit{ELBO}(q) = \mathbb{E}_{x \sim q(\mathbf{x})}[\log p(\mathbf{x}, \mathbf{y})] - \mathbb{E}_{x \sim q(\mathbf{x})}[\log q(\mathbf{x})]$$

Variational Inference (VI) (Blei et al. 2017) \rightarrow approximate inference when the true posterior $p(\mathbf{x}|\mathbf{y})$ is intractable

- It is approximated by a simpler variational distribution $q(\mathbf{x})$ (from a family Q)
- We solve the optimization problem:

$$q^*(\mathbf{x}) = \operatorname{argmin}_{q(\mathbf{x}) \in \mathcal{Q}} \mathbb{KL}(q(\mathbf{x}) || p(\mathbf{x} | \mathbf{y}))$$

with:

$$\mathbb{KL}\big(q(\boldsymbol{x})||p(\boldsymbol{x}|\boldsymbol{y})\big) = \mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[\log q(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[\log p(\boldsymbol{x}|\boldsymbol{y})]$$

• Note that this is equivalent to maximizing the *Evidential Lower BOund* (ELBO):

$$\textit{ELBO}(q) = \mathbb{E}_{x \sim q(\mathbf{x})}[\log p(\mathbf{x}, \mathbf{y})] - \mathbb{E}_{x \sim q(\mathbf{x})}[\log q(\mathbf{x})]$$

 $\rightarrow\,$ We now study the importance of choosing a rich family ${\cal Q}$

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Spatial Bayes Networks (SBNs)

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Spatial Bayes Networks (SBNs)

Let us discard observed variables for now

Spatial Bayes Networks (SBNs)

- Let us discard observed variables for now
- The SBN model has for joint distribution:

$$p(\mathbf{x}) = p(x_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s | x_{s^-}, x_{v(s)}), \text{ with } v \colon s \longmapsto \begin{cases} (s^-)^{\leftarrow} \text{ if } s \text{ is a left node}, \\ (s^-)^{\rightarrow} \text{ if } s \text{ is a right node}. \end{cases}$$

Spatial Bayes Networks (SBNs)

- Let us discard observed variables for now
- The SBN model has for joint distribution:

$$p(\mathbf{x}) = p(x_r) \prod_{s \in \bar{S}} p(x_s | x_{s^-}, x_{v(s)}), \text{ with } v \colon s \longmapsto \begin{cases} (s^-)^{\leftarrow} \text{ if } s \text{ is a left node}, \\ (s^-)^{\rightarrow} \text{ if } s \text{ is a right node}. \end{cases}$$

Graphical model for the SBN

Spatial Bayes Networks (SBNs)

- Let us discard observed variables for now
- The SBN model has for joint distribution:

$$p(\mathbf{x}) = p(x_r) \prod_{s \in \bar{S}} p(x_s | x_{s^-}, x_{v(s)}), \text{ with } v \colon s \longmapsto \begin{cases} (s^-)^{\leftarrow} \text{ if } s \text{ is a left node}, \\ (s^-)^{\rightarrow} \text{ if } s \text{ is a right node}. \end{cases}$$

Graphical model for the SBN

■ Inference will be carried with 3 different VIs (Gangloff et al. 2020)

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Variational Inference in SBNs

Let us consider a small toy SBN $\rightarrow p(\mathbf{x})$ is the target distribution

Applications to vascular surgery

Conclusion

Variational Inference in SBNs

Let us consider a small toy SBN

- $ightarrow
 ho({m x})$ is the target distribution
 - Approximation with Mean Field assumption:

$$q^{MF}(oldsymbol{x}) = \prod_{s\in\mathcal{S}} q(x_s)$$

Applications to vascular surgery

Conclusion

Variational Inference in SBNs

Let us consider a small toy SBN

- $ightarrow
 ho({m x})$ is the target distribution
 - Approximation with Mean Field assumption:

$$q^{MF}(oldsymbol{x}) = \prod_{s \in \mathcal{S}} q(x_s)$$

Approximation with Markov Trees:

$$q^{MT}(\mathbf{x}) = q(x_r) \prod_{s \in \bar{\mathcal{S}}} q(x_s | x_{s^-})$$

Variational Inference in SBNs

Let us consider a small toy SBN

- $ightarrow
 ho({m x})$ is the target distribution
 - Approximation with Mean Field assumption:

$$q^{MF}(oldsymbol{x}) = \prod_{s \in \mathcal{S}} q(x_s)$$

Approximation with Markov Trees:

$$q^{MT}(oldsymbol{x}) = q(x_r) \prod_{s \in ar{\mathcal{S}}} q(x_s | x_{s^-})$$

• Approximation with STMTs:

$$q^{STMT}(\boldsymbol{x},\boldsymbol{v}) = q(x_r,v_r) \prod_{s \in \bar{\mathcal{S}}} q(x_s,v_s|x_{s^-},v_{s^-})$$

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Variational Inference in SBNs

Target p

Dispersions of errors for true marginals estimation (1000 trials)

Error dispersion: MF VI > MT VI > STMT VI

 $\rightarrow\,$ STMTs seem to best capture the enhanced correlations of SBNs

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Gaussian fully-connected Conditional Random Fields (fcCRFs)

Gaussian fully-connected Conditional Random Fields (fcCRFs)

Successful model proposed in (Krähenbühl et al. 2011) for image segmentation

Gaussian fully-connected Conditional Random Fields (fcCRFs)

- Successful model proposed in (Krähenbühl et al. 2011) for image segmentation
- **Discriminative model** \rightarrow the posterior distribution is directly formulated:

$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{Z} \exp\bigg(-\bigg(\sum_{s \in S} \psi_u(x_s) + \sum_{(s,s') \in S^2} (1 - \delta_{x_s}^{x_{s'}}) \sum_{r=1}^2 w_r k_r(\mathbf{f}_s, \mathbf{f}_{s'})\bigg)\bigg),$$

where $\begin{vmatrix} k_1 & \text{is a bilateral filtering kernel,} \\ k_2 & \text{is a Gaussian kernel,} \\ \psi_u & \text{are unary potentials.} \end{vmatrix}$

Gaussian fully-connected Conditional Random Fields (fcCRFs)

- Successful model proposed in (Krähenbühl et al. 2011) for image segmentation
- **Discriminative model** \rightarrow the posterior distribution is directly formulated:

$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{Z} \exp\bigg(-\bigg(\sum_{s \in S} \psi_u(x_s) + \sum_{(s,s') \in S^2} (1 - \delta_{x_s}^{x_{s'}}) \sum_{r=1}^2 w_r k_r(\mathbf{f}_s, \mathbf{f}_{s'})\bigg)\bigg),$$

where $\begin{vmatrix} k_1 & \text{is a bilateral filtering kernel,} \\ k_2 & \text{is a Gaussian kernel,} \\ \psi_u & \text{are unary potentials.} \end{vmatrix}$

fcCRF

This posterior is intractable: $\forall s \in S$, $\mathcal{N}_s = S \setminus \{s\}$
Variational Inference in fcCRFs

Classically VI is performed using the Mean Field assumption (MF VI)

Variational Inference in fcCRFs

- Classically VI is performed using the Mean Field assumption (MF VI)
- We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al., submitted):

Variational Inference in fcCRFs

- Classically VI is performed using the Mean Field assumption (MF VI)
- We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al., submitted):
- $\rightarrow\,$ Several parallel VIs with parallel MCs

Variational Inference in fcCRFs

- Classically VI is performed using the Mean Field assumption (MF VI)
- We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al., submitted):
- $\rightarrow\,$ Several parallel VIs with parallel MCs
- \rightarrow If *N* independent MCs of size *M*:

$$q(\mathbf{x}) = \prod_{n=1}^{N} q_1^n(x_1^n) \prod_{m=2}^{M} q_m^n(x_m^n|x_{m-1}^n)$$

Variational Inference in fcCRFs

- Classically VI is performed using the Mean Field assumption (MF VI)
- We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al., submitted):
- $\rightarrow\,$ Several parallel VIs with parallel MCs
- \rightarrow If *N* independent MCs of size *M*:

$$q(\mathbf{x}) = \prod_{n=1}^{N} q_1^n(x_1^n) \prod_{m=2}^{M} q_m^n(x_m^n | x_{m-1}^n)$$

Remark: The idea is similar to that of Factorial HMMs (Ghahramani et al. 1997)

Variational Inference in fcCRFs: numerical applications

Remark: A Gaussian Mixture Model (GMM) is used to initialize the fcCRF model

Error rate as a function of σ (two different ranges)

 \rightarrow MC VI gives a few point improvement for a small additional computational cost \blacktriangleright See synthetic images

Conclusion

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

To conclude the section

More general probabilistic models

■ Inference has become much more complex

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

To conclude the section

More general probabilistic models

- Inference has become much more complex
- VI as a way to approximate the intractable posterior

Conclusion

To conclude the section

More general probabilistic models

- Inference has become much more complex
- VI as a way to approximate the intractable posterior
- Importance of the choice of the variational distribution

Outline

Introduction

2 Pairwise and Triplet Markov Models

More general probabilistic models

4 Applications to vascular surgery

- Segmentations of degraded images
- Histological segmentations

6 Conclusion

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Segmentations of degraded images

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery 0000000

Segmentation of organic biomaterial with artifacts

Case 1

Unsupervised segmentations of organic material in corrupted X-rays images

 \rightarrow Best overall segmentation score for GPMF classifications

Conclusion

Segmentation of organic biomaterial with artifacts

	FN	FP		FN	FP
BM3D+GC	0.14	0.01	BM3D+GC	0.05	0.07
P-IN	0.08	0.08	P-IN	0.02	0.14
GPMF	0.08	0.04	GPMF	0.02	0.07
(a) Case 1			(b) Case 2		

Table: FN and FP rates in corrupted areas

 \rightarrow Best False Positive / False Negative compromise for GPMF

Segmentation of organic biomaterial with artifacts

A Smoothing effect can lead to spurious classifications

GPMF segmentations (limiting cases)

Segmentation of organic biomaterial with artifacts

A Smoothing effect can lead to spurious classifications

GPMF segmentations (limiting cases)

Probably due to the assumed stationarity of the noise range and strength

Segmentation of organic biomaterial with artifacts

A Smoothing effect can lead to spurious classifications

GPMF segmentations (limiting cases)

- Probably due to the assumed stationarity of the noise range and strength
- Introduce non-stationarity (*e.g.* with triplet Markov model (Lanchantin et al. 2008))

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Histological segmentations

3D histological segmentations

The goal is to perform 3D segmentations with histological classes of microCT

3D histological segmentations

The goal is to perform 3D segmentations with histological classes of microCT

Construction of the protocol and of the dataset

3D histological segmentations

The goal is to perform 3D segmentations with histological classes of microCT

Construction of the protocol and of the dataset

■ 6 histological classes of interest: *background*, *sheet and nodular calcifications*, *soft tissues*, *fatty tissues*, *specimen holder*

3D histological segmentations

The goal is to perform 3D segmentations with histological classes of microCT

Construction of the protocol and of the dataset

- 6 histological classes of interest: *background*, *sheet and nodular calcifications*, *soft tissues*, *fatty tissues*, *specimen holder*
- Convolutional Neural Network + fcCRF for 3D segmentations

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

3D histological segmentations

Original images

Segmentations

Data cubes of grayscale mCTs and histological segmentations of explanted arteries (Gangloff et al., submitted)

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

3D histological segmentations

Original images

Segmentations

Data cubes of grayscale mCTs and histological segmentations of explanted arteries (Gangloff et al., submitted)

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery ○○○○○○●

Conclusion

To conclude the section

Applications to vascular surgery

Fine segmentation of the stent and its environment

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

To conclude the section

Applications to vascular surgery

- Fine segmentation of the stent and its environment
- First histologic segmentation of explants combining deep learning and probabilistic graphical models

Outline

Introduction

2 Pairwise and Triplet Markov Models

More general probabilistic models

() Applications to vascular surgery

6 Conclusion

- Conclusions & Perspectives
- Publications

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Conclusions & Perspectives

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Summary of the models

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Summary of the models

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion

Summary of the models

Conclusions & Perspectives

Probabilistic graphical models:

A field where theory and applications well complement each other

Conclusions & Perspectives

Probabilistic graphical models:

- A field where theory and applications well complement each other
- Many advances in our understanding of the models might follow in the next years

Conclusion ○○○●○○

Conclusions & Perspectives

Probabilistic graphical models:

- A field where theory and applications well complement each other
- Many advances in our understanding of the models might follow in the next years
- With endless possibilities of applications

Conclusions & Perspectives

Probabilistic graphical models:

- \blacksquare A field where theory and applications well complement each other
- Many advances in our understanding of the models might follow in the next years
- With endless possibilities of applications

Applications to vascular surgery:

A field which only starts to be supported by machine learning

Conclusions & Perspectives

Probabilistic graphical models:

- \blacksquare A field where theory and applications well complement each other
- Many advances in our understanding of the models might follow in the next years
- With endless possibilities of applications

Applications to vascular surgery:

- A field which only starts to be supported by machine learning
- Much is yet to discover on biomaterials and the diseases

Conclusions & Perspectives

Probabilistic graphical models:

- \blacksquare A field where theory and applications well complement each other
- Many advances in our understanding of the models might follow in the next years
- With endless possibilities of applications

Applications to vascular surgery:

- A field which only starts to be supported by machine learning
- Much is yet to discover on biomaterials and the diseases
- Improve the treatments and the prevention
| Introd | uctio | |
|--------|-------|--|
| | | |

Pairwise and Triplet Markov Models

More general probabilistic models

Applications to vascular surgery

Conclusion ○○○○●○

Publications

Publications

Journal

- Unsupervised Segmentation with Gaussian Pairwise Markov Fields, H. Gangloff, J.-B. Courbot, E. Monfrini, C. Collet, submitted to CSDA
- Automated histological segmentation on micro-computed tomography images of atherosclerotic arteries, S. Kuntz, H. Gangloff, H. Naamoune, E. Monfrini, C. Collet, A. Lejay, M. Kutyna, R. Virmani, N. Chakfé, submitted to EJVES
- Co-registration of peripheral atherosclerotic plaques assessed by conventional CT-angiography, micro-CT and histology in CLTI patients, S. Kuntz, H. Jinnouchi, M. Kutyna, S. Torii, A. Cornelissen, Y. Sato, M. E. Romero, F. Kolodgie, A. V. Finn, A. Schwein, M. Ohana, H. Gangloff, A. Lejay, N. Chakfé, R. Virmani, *EJVES*, 2020.
- Assessing the segmentation performance of pairwise and triplet Markov models, I. Gorynin, H. Gangloff, E. Monfrini, W. Pieczynski, *SP*, 2018.

Conference

- Unsupervised Image Segmentation with Spatial Triplet Markov Trees, H. Gangloff, J.-B. Courbot, E. Monfrini, C. Collet, submitted to ICASSP, 2021.
- Markov Chain Variational Inference in Fully-Connected Conditional Random Fields, H. Gangloff, E. Monfrini, C. Collet, submitted to ICASSP, 2021.
- Improved Centerline Tracking for new descriptors of atherosclerotic aortas, H. Gangloff, E. Monfrini, M.Z. Ghariani, M. Ohana, C. Collet, N. Chakfé, IPTA, 2020.
- Unsupervised segmentation of stents corrupted by artifacts in medical X-ray images, H. Gangloff, E. Monfrini, C. Collet, N. Chakfé, IPTA, 2020.
- Spatial Triplet Markov Trees for auxiliary variational inference in Spatial Bayes Networks, H. Gangloff, J.-B. Courbot, E. Monfrini, C. Collet, SMTDA, 2020.
- Segmentation de stents dans des données médicales à rayons-X corrompues par les artéfacts, H. Gangloff, E. Monfrini, C. Collet, N. Chakfé, GRETSI, 2019.
- Segmentation non-supervisée dans les champs de Markov couples gaussiens, H. Gangloff, J.-B. Courbot, E. Monfrini, C. Collet, GRETSI, 2019.
- Performance comparison across hidden, pairwise and triplet Markov models' estimators, I. Gorynin, L. Crelier, H. Gangloff, E. Monfrini, W. Pieczynski, ICACM, 2016.

`

GPMF: Proof of the distribution

• Necessity: Using $p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{x},\mathbf{y})}{\int_{\mathbb{R}^N} d\mathbf{y} p(\mathbf{x},\mathbf{y})}$ where:

$$p(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{Z} \exp\left(-\sum_{n=1}^{|\mathcal{N}|} \left(\sum_{\boldsymbol{c} \in \mathcal{C}_n} V_n(\boldsymbol{x}_{\boldsymbol{c}}, \boldsymbol{y}_{\boldsymbol{c}})\right)\right) \text{ and } p(\boldsymbol{y}|\boldsymbol{x}) = \frac{\exp\left(-\sum_{s,s' \in \mathcal{S}^2} y_s C_{s,s'} y_{s'}\right)}{\sqrt{2\pi \det(C^{-1})}}$$

/

where C is a SPD matrix. By equivalences, we get the constraints on V_n .

- Sufficiency:
 - **PMF** w.r.t. \mathcal{N} : $p(\mathbf{x}, \mathbf{y}) > 0, \forall \mathbf{x} \in \Omega^N, \forall \mathbf{y} \in \mathbb{R}^N \text{ and } \forall s \in S,$ $p(x_s, y_s | \mathbf{x}_{S \setminus s}, \mathbf{y}_{S \setminus s}) = p(x_s, y_s | \mathbf{x}_{\mathcal{N}_s}, \mathbf{y}_{\mathcal{N}_s}).$
- p(y|x) is a GMRF: We develop p(y|x) = exp(-E(x,y)) / ∫_{RN} dy exp(-E(x,y)) to get the result by using E(x, y) = ∑²_{n=1} ∑_{c∈C_n} V̄_n(y_c, x_c) + ∑^{|N|}_{n=1} ∑_{c∈C_n} Ṽ_n(x_c),
 ▶ Back to GPME definition

GPMF models: numerical applications

Unsupervised segmentation of images from the dataset

Remark: \hat{x}_{pylS} from (Borovec et al. 2017) and \hat{x}_{BM+GC} from (Dabov et al. 2009) Back to GPMF numerical applications

GPMF time complexity

Stochastic Parameter Estimation algorithm

For T SPE iterations $\rightarrow T(T+1)/2$ total Gibbs sampler runs

For $T = 30 \rightarrow 465$ Gibbs sampler runs ~ 120 seconds (with r = 6)

Image segmentation

Range of o	correlations	P-IN	GPMF
	$\rightarrow r = 1$	15s	2min10s
	$\rightarrow r = 3$	15s	3min20s
	$\rightarrow r = 6$	15s	8min

Table: Time in MPM segmentation of a 130×130 image

Variational Inference in fcCRFs: numerical applications

Supervised segmentations of images corrupted

- \rightarrow Using MC VI always leads to an improvement of a few points in the segmentation results of MF VI for very small additional computational cost
- Back to MC VI numerical applications

References I

- L. E. Baum and T. Petrie. "Statistical inference for probabilistic functions of finite state Markov chains". In: The annals of mathematical statistics 37.6 (1966), pp. 1554–1563.
- [2] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: The annals of mathematical statistics 41.1 (1970), pp. 164–171.
- D. Benboudjema and W. Pieczynski. "Unsupervised image segmentation using triplet Markov fields". In: Computer Vision and Image Understanding 99.3 (2005), pp. 476–498.
- [4] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. "Variational inference: A review for statisticians". In: Journal of the American statistical Association 112.518 (2017), pp. 859–877.
- [5] J. Borovec, J. Svihlik, J. Kybic, and D. Habart. "Supervised and unsupervised segmentation using superpixels, model estimation, and graph cut". In: Journal of Electronic Imaging 26.6 (2017), p. 061610.
- [6] N. Chakfé and F. Heim. "What do we learn from explant analysis programs?" In: European Journal of Vascular and Endovascular Surgery 54.2 (2017), pp. 133–134.
- [7] J.-B. Courbot, E. Monfrini, V. Mazet, and C. Collet. "Triplet markov trees for image segmentation". In: SSP 2018: IEEE Workshop on Statistical Signal Processing. IEEE Computer Society, 2018, pp. 233–237.
- [8] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. "BM3D image denoising with shape-adaptive principal component analysis". In: 2009.
- H. Gangloff, J.-B. Courbot, E. Monfrini, and C. Collet. "Segmentation non-supervisée dans les champs de Markov couples gaussiens". In: Colloque GRETSI. 2019.

References II

- [10] H. Gangloff, J.-B. Courbot, E. Monfrini, and C. Collet. "Spatial Triplet Markov Trees for auxiliary variational inference in Spatial Bayes Networks". In: Stochastic Modeling Techniques and Data Analysis international conference (SMTDA'20). 2020. In press.
- [11] S. Geman and D. Geman. "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images". In: IEEE Transactions on pattern analysis and machine intelligence 6 (1984), pp. 721–741.
- [12] Z. Ghahramani and M. I. Jordan. "Factorial hidden Markov models". In: Machine learning 29.2 (1997), pp. 245–273.
- [13] I. Gorynin, H. Gangloff, E. Monfrini, and W. Pieczynski. "Assessing the segmentation performance of pairwise and triplet Markov models". In: Signal Processing 145 (2018), pp. 183–192.
- [14] A. Klein, J. A. v. d. Vliet, L. J. Oostveen, Y. Hoogeveen, L. Kool, J. Renema, and C. H. Slump. "Automatic segmentation of the wire frame of stent grafts from CT data". In: *Medical image analysis* 16 1 (2012), pp. 127–39.
- [15] P. Krähenbühl and V. Koltun. "Efficient inference in fully connected crfs with gaussian edge potentials". In: Advances in Neural Information Processing Systems. 2011, pp. 109–117.
- [16] J.-M. Laferté, P. Pérez, and F. Heitz. "Discrete Markov image modeling and inference on the quadtree". In: IEEE Transactions on image processing 9.3 (2000), pp. 390–404.
- [17] P. Lanchantin, J. Lapuyade-Lahorgue, and W. Pieczynski. "Unsupervised segmentation of triplet Markov chains hidden with long-memory noise". In: Signal Processing 88.5 (2008), pp. 1134–1151.
- [18] G. Langs, N. Paragios, P. Desgranges, A. Rahmouni, and H. Kobeiter. "Learning deformation and structure simultaneously: In situ endograft deformation analysis". In: Medical image analysis 15.1 (2011), pp. 12–21.

Appendices

References III

- [19] A. Lejay, B. Colvard, L. Magnus, D. Dion, Y. Georg, J. Papillon, F. Thaveau, B. Geny, L. Swanström, F. Heim, and N. Chakfé. "Explanted vascular and endovascular graft analysis: where do we stand and what should we do?" In: European Journal of Vascular and Endovascular Surgery 55.4 (2018), pp. 567–576.
- [20] M. Ohana, S. El Ghannudi, E. Girsowicz, A. Lejay, Y. Georg, F. Thaveau, N. Chakfe, and C. Roy. "Detailed cross-sectional study of 60 superficial femoral artery occlusions: morphological quantitative analysis can lead to a new classification". In: Cardiovascular diagnosis and therapy 4.2 (2014), p. 71.
- [21] H. S. Park, Y. E. Chung, and J. K. Seo. "Computed tomographic beam-hardening artefacts: mathematical characterization and analysis". In: *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 373.2043 (2015).
- [22] D. Perrin, P. Badel, L. Orgeas, C. Geindreau, S. rolland du Roscoat, J.-N. Albertini, and S. Avril. "Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts". In: Journal of the mechanical behavior of biomedical materials 63 (2016), pp. 86-99.
- [23] W. Pieczynski. "Arbres de Markov couple". In: Comptes Rendus Mathématique 335.1 (2002), pp. 79-82.
- [24] W. Pieczynski. "Pairwise markov chains". In: IEEE Transactions on pattern analysis and machine intelligence 25.5 (2003), pp. 634–639.
- [25] W. Pieczynski and A.-N. Tebbache. "Pairwise Markov random fields and segmentation of textured images". In: Machine graphics and vision 9.3 (2000), pp. 705–718.