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Cardiovascular diseases

� Human and monetary cost for society
→ ≈ 18 millions death worldwide in 2016 (31% of all the year deaths)1

→ Total cost estimated to 210 billions e in 2015 in Europe2

� Increasing number of affected people: these are diseases linked to old age,
sedentarity and bad life hygiene (nutrition, tobacco, ...)3

1https://www.who.int
2http://www.ehnheart.org/
3https://healthmetrics.heart.org/wp-content/uploads/2017/10/

Cardiovascular-Disease-A-Costly-Burden.pdf
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Cardiovascular diseases
� Hypertension, strokes, myocardal infarcts, etc. → underlying pathology of the

arteries: the atherosclerosis

www.openstax.org/details/books/anatomy-and-physiology/

� Atheromateous plaques are composed of calcium, lipids, macrophage cells, ...
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Vascular surgery

� Endovascular surgery
→ The patient does not need to be opened: mini-invasive and image guided
→ Reduced risks and length of hospital stay

� Biomaterials are increasingly used to treat arterial lesions

stent
www.cookmedical.com

stentgraft
www.crbard.com

vascular prothesis
www.goremedical.com

But biomaterials are recent and not well understood!
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The data
CT: Computed Tomography / microCT

Example of input data (2D views)

Calcifications Stent Artifacts

Being able to segment such images could help develop the knowledge of biomaterials!
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About the literature

� Very little is known about the in vivo behaviour of the biomaterials

� Metal segmentation: unaddressed when stent + calcifications + artifacts
→ The most interesting cases cannot be treated automatically
→ Gap to solve in the literature

� Database of biomaterial images are not (publicly) existing
→ Data scarcity
→ Data gathering and private database creation thanks to Geprovas and CVPath
(Renu Virmani, Gaithersburg, MD, USA)

→ Missing tools for research on biomaterials

(Langs et al. 2011) (Klein et al. 2012) (Ohana et al. 2014) (Park et al. 2015) (Perrin et al.
2016) (Chakfé et al. 2017) (Lejay et al. 2018)
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About the literature

Probabilistic graphical models
� Very active research topic

� Often used for unsupervised problems
� Sparse models → fast and exact computations → hugeness of medical data
� Dense models → approximating methods → model very complex phenomena
� Combined with deep learning → many top current results in medical imaging
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Probabilistic modeling
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Probabilistic graphical models: the undirected case

� Let G = (S, E) be an undirected graph
� S is the set of sites, nodes or vertices
� E is the set of edges

� A neighborhood Ns , ∀s ∈ S is the set:

Ns = {s ′ ∈ S : (s, s ′) ∈ E}

� A clique c is a subset of S such that:

∀(s, s ′) ∈ c2, (s, s ′) ∈ E

� C is the set of cliques of S
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∀(s, s ′) ∈ c2, (s, s ′) ∈ E

� C is the set of cliques of S

a b

c d

e

An undirected graph∣∣∣∣∣∣∣∣
S = {a, b, c , d , e}
c = {a, b, c , d} is a clique
c is a fully connected subset
Na = {b, c , d}

6/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Probabilistic graphical models: the directed case

� G is a directed graph if edges of E are directed

� s ∈ S, if there exists (s−, s) ∈ E : s is the son of s−

and s− is the father of s
� P(s) is the set of fathers of s
� A root node is a node without any father.
SR is the set of roots of S.

� S̄ is the set of nodes with at least one father
� Directed cycles and semi cycles:

a

b

c

{a, b, c} is a cycle

a

b

c

{a, b, c} is a semi cycle
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a

b

c

{a, b, c} is a cycle

a

b

c

{a, b, c} is a semi cycle

a c

d e

g h

A directed graph∣∣∣∣∣∣∣∣
S = {a, c , d , e, g , h}
S̄ = {d , e, g , h}
a and c are root nodes
P(d) = {a, e, g}
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Probabilistic graphical models: random variables and graphs
� Associate a random variable Xs (or a random vector...) at every site s of G
→ How to form the joint probability distribution p(xxx),xxx = (xs)s∈S ?

� In the undirected case:

→ unnormalized conditional probabilities: p̃(xs |xxxNs ),∀s ∈ S̄:

p(xxx) =
1
Z

∏
s∈S

p̃(xs |xxxNs ), with Z a normalization constant

→ (equivalently) an energy through potential functions E (xxx) =
∑

c∈C ψ(xxxc):

p(xxx) =
1
Z

exp (−E (xxx)) (a Gibbs distribution)

� In the directed case:

→ local conditional probabilities: p(xs |xxxP(s)),∀s ∈ S̄ and p(xr ),∀r ∈ SR:

p(xxx) =
∏

r∈SR

p(xr )
∏
s∈S̄

p(xs |xxxPs )
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Probabilistic graphical models: probabilistic setting

Notations:
� Vectors: xxx / Scalars: x

� Random variables: X ; their realizations: x
� For a discrete random variable X → p({X = x}) is denoted p(X = x), or p(x)

� For a continuous random variable Y , p(y) is the density function of Y
Context of Bayesian segmentation:
� Segment an image with values in R into K classes {ωk}k∈{1,...,K} , Ω

� XXX = (Xs)s∈S with value in Ω|S| → the hidden variables.
� YYY = (Ys)s∈S with value in R|S| → the observed variables.
� Segmentation criteria: → Maximum A Posteriori (MAP)

→ Maximum Posterior Mode (MPM)
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Hidden Markov Models (HMM)

� Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

� Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

� Different models belong to the HMM family:

� Hidden and observed random variables
� Generative models → p(xxx ,yyy) is modeled
� XXX is a Markovian process and p(yyy |xxx) =

∏
s∈S p(ys |xs)
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Hidden Markov Models: classical models
Hidden Markov Field (HMF) (Geman et al. 1984)

Ys

Xs

p(xxx) is a Markov field

p(xxx ,yyy) =
1
Z

∏
s∈S

p̃(xs |xxxNs )p̃(ys |xs)

inference → approximate computations

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

Xs

Ys

p(xxx) is a Markov chain

p(xxx ,yyy) = p(xr )p(yr |xr )
∏
s∈S̄

p(xs |xs−)p(ys |xs)

inference → direct computations

Hidden Markov Tree (HMT) (Laferté et al. 2000)

Ys

Xs p(xxx) is a Markov tree
p(xxx ,yyy)→ same as an HMC

inference → direct computations
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Motivations

→ Strong restrictions classically made in HMMs:

� XXX is constrained to be a Markov field / chain / tree
� The independent noise assumption p(yyy |xxx) =

∏
s∈S p(ys |xs)

� More complex noise models: special cases of pairwise and triplet models

→ Pairwise and Triplet (Hidden) Markov Models are richer models:

� Strict generalizations of HMMs (Gorynin et al. 2018)
� Conservation of the good properties of inference
� Naturally encompass extended HMMs models from the literature
� Triplet models integrate auxiliary random variables → link with deep learning models
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Pairwise and triplet assumptions
Pairwise Markov Field (PMF) (Pieczynski and Tebbache 2000)

Ys

Xs

p(xxx ,yyy) is a Markov field

p(xxx ,yyy) =
1
Z

∏
s∈S

p̃(xs , ys |xxxNs ,yyyNs )

Pairwise Markov Chain (Pieczynski 2003)

Xs

Ys

p(xxx ,yyy) is a Markov chain

p(xxx ,yyy) = p(xr , yr )
∏
s∈S̄

p(xs , ys |xs− , ys−)

Pairwise Markov Tree (Pieczynski 2002)

Ys

Xs p(xxx ,yyy) is a Markov tree

p(xxx ,yyy)→ same as a Pairwise Markov Chain
13/42
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Pairwise and triplet assumptions
Triplet Markov Field (Benboudjema et al. 2005)

Ys

Xs

Vs

p(xxx ,vvv ,yyy) is a Markov field

p(xxx ,vvv ,yyy) =
1
Z

∏
s∈S

p̃(xs , vs , ys |xxxNs ,vvvNs ,yyyNs )

Triplet Markov Chain (Lanchantin et al. 2008)

Xs

Ys

Vs

p(xxx ,vvv ,yyy) is a Markov chain

p(xxx ,vvv ,yyy) = p(xr , vr , yr )
∏
s∈S̄

p(xs , vs , ys |xs− , vs− , ys−)

Triplet Markov Tree (TMT) (Courbot et al. 2018)

Xs ,Vs ,Ys p(xxx ,vvv ,yyy) is a Markov tree

p(xxx ,vvv ,yyy)→ same as a Triplet Markov Chain
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Pairwise and triplet assumptions

� In pairwise models:
� Neither p(xxx) nor p(yyy) are necessarily Markovian distributions

� But p(xxx |yyy) and p(yyy |xxx) are Markovian distributions
→ Inference can be done as in classical HMMs

� In triplet models:

� Neither p(xxx), p(yyy), p(vvv), p(xxx ,yyy), p(yyy ,vvv), nor p(xxx ,vvv) are necessarily Markovian
distributions

� But p(xxx ,vvv |yyy) (and the others...) are Markovian distributions
→ Inference can be done as in classical HMMs
→ Original hidden states:

p(xxx |yyy) =
∑
vvv

p(xxx ,vvv |yyy)
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Gaussian Pairwise Markov Fields 	
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Gaussian Pairwise Markov Fields: motivation

� Gaussian Markov Random Fields (GMRF) → a model for correlated noise

p(yyy) =
exp

(1
2yyy

TQyyy
)√

(2π)Ndet(Q−1)
,

Q = Σ−1: precision matrix,
Σ: covariance matrix.

Examples of realizations yyy of GMRF

� PMF models can integrate GMRFs:

Ys

Xs

All possible direct
dependencies
−→

Ys

Xs
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Gaussian Pairwise Markov Fields (GPMFs) 	

� Definition: A GPMF is a PMF where p(yyy |xxx) is a GMRF.

� Property: (xxx ,yyy) is a GPMF (w.r.t. the neighborhood N ) iff:

p(xxx ,yyy) =
1
Z

exp
(
− E (xxx ,yyy)

)
, with E (xxx ,yyy) =

2∑
n=1

∑
ccc∈Cn

V̄n(yyyccc ,xxxccc) +

|N |∑
n=1

∑
ccc∈Cn

Ṽn(xxxccc)

with the constraints:
� V̄n(yyyccc ,xxxccc) is a positive semidefinite quadratic form in the yyy variable.
� Ṽn(xxxccc) are potential functions where the yyyccc variables have no role.

� See sketch of proof
� GPMFs are introduced in (Gangloff et al., submitted)
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Examples of GPMFs

� Let us define a GPMF model:

E (xxx ,yyy) =
∑
s∈S

∑
s′∈Ns

−1[s′∈N 1
s ]δ

xs′
xs β

(
1− 1

2
(ȳs − ȳs′)

2
)

+
∑
s∈S

∑
s′∈
Ns∪{s}

[
1[s′∈N 2

s ]
1
2
Qs,s′ ȳs ȳs′

]

� It obeys the GPMF definition.
� Direct dependencies in GPMFs:

Ys

Xs

� Neither p(xxx) nor p(yyy) are Markovian distributions!
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(ȳs − ȳs′)
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Examples of GPMFs

� Let us define the Potts-GMRF (P-GMRF) model (Gangloff et al. 2019):

E (xxx ,yyy) =
∑
s∈S

∑
s′∈Ns

−1[s′∈N 1
s ]δ

xs′
xs β +

∑
s∈S

∑
s′∈
Ns∪{s}

[
1[s′∈N 2

s ]
1
2
Qs,s′ ȳs ȳs′

]

� It also obeys the GPMF definition.
� Fewer direct dependencies in Potts-GMRFs:

Ys

Xs
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Examples of GPMFs

� Let us define the Potts-Independent Noise (P-IN) model:

E (xxx ,yyy) =
∑
s∈S

∑
s′∈Ns

−1[s′∈N 1
s ]δ

xs′
xs β +

∑
s∈S

[
log(
√
2πσ2)− ȳ2

s

2σ2

]

� Classical HMF-IN model which is also a GPMF!
� Even fewer direct dependencies:

Ys

Xs

P-IN

Ys

Xs

P-GMRF

Ys

Xs

GPMF
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GPMF models: numerical applications
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Error rate in segmentation for varying correlated noise levels

→ The GPMF model always gives the best results
� See synthetic images
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Spatial Triplet Markov Trees (STMTs) +

Distribution of STMTs (Gangloff et al. 2020) (Gangloff et al., submitted):

p(xxx ,vvv ,yyy) = p(xr ,vvv r , yr )
∏
s∈S̄

p(xs ,vvv s , ys |xs− ,vvv s− , ys−)

� Special design of VVV to improve spatial correlations in the classical HMT model.
∀s ∈ S : VVV s = (V←,V↖,V ↑,V↗,V→,V↘,V ↓,V↙)

� Quadtrees: each site s−has four sons (sNW , sNE , sSE , sSW ) (except for last layer):

←

↖ ↑ ↗

→

↘↓↙

s−

NW←

↖ ↑ ↗

→

↘↓↙

sNW

NE←

↖ ↑ ↗

→

↘↓↙

sNE

SW←

↖ ↑ ↗

→

↘↓↙

sSW

SE←

↖ ↑ ↗

→

↘↓↙

sSE

X

V

� We consider only observations Ys at the finer resolution.
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Designing the auxiliary process in STMTs
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Propagation of spatial information: the same color indicates the same probability law
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STMTs: numerical applications
� Ising-like potentials to propagate spatial homogeneity similarly to Markov fields:

p(xs |xs− ,vvv s−) =
1
Z

exp

(
αδ

xs−
xs +

∑
vs−∈vvv s−

βδ
vs−
xs

)
, with (α, β) ∈ R2

+.

� Comparing HMFs, HMTs and STMTs in unsupervised segmentation:
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Error rate in unsupervised segmentation function of the noise level
→ STMTs greatly improve HMT results
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� Generalizations of HMMs → increased modeling possibilities

� Inference not harder than in HMMs
� Potential of auxiliary random variables

25/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

To conclude the section

Pairwise and Triplet Markov Models

� Generalizations of HMMs → increased modeling possibilities
� Inference not harder than in HMMs

� Potential of auxiliary random variables

25/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

To conclude the section

Pairwise and Triplet Markov Models

� Generalizations of HMMs → increased modeling possibilities
� Inference not harder than in HMMs
� Potential of auxiliary random variables

25/42



Outline

1 Introduction

2 Pairwise and Triplet Markov Models

3 More general probabilistic models
� Going beyond Hidden Markov Models
� Spatial Bayes Networks (SBNs)
� Gaussian fully-connected Conditional Random Fields (fcCRFs)

4 Applications to vascular surgery

5 Conclusion



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Going beyond Hidden Markov Models



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Towards more intricate probabilistic models

Probabilistic models with richer correlations:
� Spatial Bayes Networks (SBNs) (Gangloff et al.

2020)

→ Defined on a general directed acyclic graph
(Bayesian network)

o Semi-cycles are created
� fully-connected Conditional Random Fields

(fcCRFs) (Krähenbühl et al. 2011)

→ Defined on a fully-connected undirected graph
o Too large neighborhoods

Greater generality makes inference much harder:

� No exact formulas but iterative methods...
� ... that (in general) approximate the results

Xs

SBN (3 layers)

Ys

Xs

fcCRF
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Variational Inference

Variational Inference (VI) (Blei et al. 2017) → approximate inference when the true
posterior p(xxx |yyy) is intractable
� It is approximated by a simpler variational distribution q(xxx) (from a family Q)

� We solve the optimization problem:

q∗(xxx) = argminq(xxx)∈QKL
(
q(xxx)||p(xxx |yyy)

)
with:

KL
(
q(xxx)||p(xxx |yyy)

)
= Ex∼q(xxx)[log q(xxx)]− Ex∼q(xxx)[log p(xxx |yyy)]

� Note that this is equivalent to maximizing the Evidential Lower BOund (ELBO):

ELBO(q) = Ex∼q(xxx)[log p(xxx ,yyy)]− Ex∼q(xxx)[log q(xxx)]

→ We now study the importance of choosing a rich family Q
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Spatial Bayes Networks (SBNs)

� Let us discard observed variables for now

� The SBN model has for joint distribution:

p(xxx) = p(xr )
∏
s∈S̄

p(xs |xs− , xv(s)), with v : s 7−→

{
(s−)← if s is a left node,
(s−)→ if s is a right node.

Graphical model for the SBN

� Inference will be carried with 3 different VIs (Gangloff et al. 2020)
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Variational Inference in SBNs
Let us consider a small toy SBN
→ p(xxx) is the target distribution

� Approximation with Mean Field assumption:

qMF (xxx) =
∏
s∈S

q(xs)

� Approximation with Markov Trees:

qMT (xxx) = q(xr )
∏
s∈S̄

q(xs |xs−)

� Approximation with STMTs:

qSTMT (xxx ,vvv) = q(xr , vr )
∏
s∈S̄

q(xs , vs |xs− , vs−)

Target p
(indirect computations)
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Variational Inference in SBNs

Dispersions of errors for true marginals estimation (1000 trials)

aa← a→

b c

d e f g

Target p

� Error dispersion: MF VI > MT VI > STMT VI

→ STMTs seem to best capture the enhanced correlations of SBNs
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(fcCRFs)
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Gaussian fully-connected Conditional Random Fields (fcCRFs)

� Successful model proposed in (Krähenbühl et al. 2011) for image segmentation

� Discriminative model → the posterior distribution is directly formulated:

p(xxx |yyy) =
1
Z

exp

(
−
(∑

s∈S
ψu(xs) +

∑
(s,s′)∈S2

(1− δxs′xs )
2∑

r=1

wrkr (fffs , fffs′)
))

,

where

∣∣∣∣∣∣
k1 is a bilateral filtering kernel,
k2 is a Gaussian kernel,
ψu are unary potentials.

Ys

Xs

fcCRF

� This posterior is intractable: ∀s ∈ S, Ns = S \ {s}
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Variational Inference in fcCRFs

� Classically VI is performed using the Mean Field assumption (MF VI)

� We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al.,
submitted):

→ Several parallel VIs with parallel MCs

→ If N independent MCs of size M:

q(xxx) =
N∏

n=1

qn1(xn1 )
M∏

m=2

qnm(xnm|xnm−1)

32/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Variational Inference in fcCRFs

� Classically VI is performed using the Mean Field assumption (MF VI)
� We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al.,

submitted):

→ Several parallel VIs with parallel MCs

→ If N independent MCs of size M:

q(xxx) =
N∏

n=1

qn1(xn1 )
M∏

m=2

qnm(xnm|xnm−1)

32/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Variational Inference in fcCRFs

� Classically VI is performed using the Mean Field assumption (MF VI)
� We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al.,

submitted):

→ Several parallel VIs with parallel MCs

→ If N independent MCs of size M:

q(xxx) =
N∏

n=1

qn1(xn1 )
M∏

m=2

qnm(xnm|xnm−1)

M

N

top-down:
N MCs of size M

down-top:
N MCs of size M

left-right:
M MCs of size N

right-left:
M MCs of size N

32/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Variational Inference in fcCRFs

� Classically VI is performed using the Mean Field assumption (MF VI)
� We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al.,

submitted):

→ Several parallel VIs with parallel MCs

→ If N independent MCs of size M:

q(xxx) =
N∏

n=1

qn1(xn1 )
M∏

m=2

qnm(xnm|xnm−1) M

N

top-down:
N MCs of size M

down-top:
N MCs of size M

left-right:
M MCs of size N

right-left:
M MCs of size N

32/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Variational Inference in fcCRFs

� Classically VI is performed using the Mean Field assumption (MF VI)
� We introduce structured VI based on Markov Chains (MC VI) (Gangloff et al.,

submitted):

→ Several parallel VIs with parallel MCs

→ If N independent MCs of size M:

q(xxx) =
N∏

n=1

qn1(xn1 )
M∏

m=2

qnm(xnm|xnm−1) M

N

top-down:
N MCs of size M

down-top:
N MCs of size M

left-right:
M MCs of size N

right-left:
M MCs of size N

Remark: The idea is similar to that of Factorial HMMs (Ghahramani et al. 1997)

32/42



Introduction Pairwise and Triplet Markov Models More general probabilistic models Applications to vascular surgery Conclusion

Variational Inference in fcCRFs: numerical applications
Remark: A Gaussian Mixture Model (GMM) is used to initialize the fcCRF model
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GMM MF VI MC VI

Error rate as a function of σ (two different ranges)

→ MC VI gives a few point improvement for a small additional computational cost
� See synthetic images
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To conclude the section

More general probabilistic models

� Inference has become much more complex

� VI as a way to approximate the intractable posterior
� Importance of the choice of the variational distribution
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Segmentations of degraded images
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Segmentation of organic biomaterial with artifacts
yyy xxx x̂xxBM+GC x̂xxP−IN x̂xxGPMF

Case 1

15.9% 15.8% 11.7%

Case 2

14.3% 15.7% 8.4%

Unsupervised segmentations of organic material in corrupted X-rays images

→ Best overall segmentation score for GPMF classifications
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Segmentation of organic biomaterial with artifacts

FN FP
BM3D+GC 0.14 0.01
P-IN 0.08 0.08
GPMF 0.08 0.04

(a) Case 1

FN FP
BM3D+GC 0.05 0.07
P-IN 0.02 0.14
GPMF 0.02 0.07

(b) Case 2

Table: FN and FP rates in corrupted areas

→ Best False Positive / False Negative compromise for GPMF
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Segmentation of organic biomaterial with artifacts

o Smoothing effect can lead to spurious classifications

yyy xxx x̂xxP−IN x̂xxGPMF

19.5% 9.1%

GPMF segmentations (limiting cases)

� Probably due to the assumed stationarity of the noise range and strength
� Introduce non-stationarity (e.g. with triplet Markov model (Lanchantin et al.

2008))
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Histological segmentations
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3D histological segmentations
The goal is to perform 3D segmentations with histological classes of microCT

� Construction of the protocol and of the dataset

coregistration /
segmentation

,
labelled dataset

� 6 histological classes of interest: background, sheet and nodular calcifications, soft
tissues, fatty tissues, specimen holder

� Convolutional Neural Network + fcCRF for 3D segmentations
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3D histological segmentations
Original images

Segmentations

Data cubes of grayscale mCTs and histological segmentations of explanted arteries
(Gangloff et al., submitted)
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To conclude the section

Applications to vascular surgery

� Fine segmentation of the stent and its environment

� First histologic segmentation of explants combining deep learning and probabilistic
graphical models
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Summary of the models

Approximate
inference

Exact
inference

Dense model

Sparse model

Hidden Markov Chains
Hidden Markov TreesHidden Markov Fields

fully-connected
Conditional

Random Fields

Gaussian Pairwise
Markov Fields

Spatial Triplet Markov TreesSpatial Bayes Networks
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Conclusions & Perspectives

Probabilistic graphical models:
� A field where theory and applications well complement each other

� Many advances in our understanding of the models might follow in the next years
� With endless possibilities of applications

Applications to vascular surgery:

� A field which only starts to be supported by machine learning
� Much is yet to discover on biomaterials and the diseases
� Improve the treatments and the prevention
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Publications
Journal

� Unsupervised Segmentation with Gaussian Pairwise Markov Fields, H. Gangloff, J.-B. Courbot, E. Monfrini, C. Collet, submitted
to CSDA
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GPMF: Proof of the distribution

� Necessity: Using p(yyy |xxx) = p(xxx ,yyy)∫
RN dyyyp(xxx ,yyy)

where:

p(xxx ,yyy) =
1
Z

exp

(
−
|N |∑
n=1

(∑
ccc∈Cn

Vn(xxxccc ,yyyccc)
))

and p(yyy |xxx) =

exp

(
−
∑

s,s′∈S2 ysCs,s′ys′

)
√

2πdet(C−1)
,

where C is a SPD matrix. By equivalences, we get the constraints on Vn.
� Sufficiency:

� PMF w.r.t. N : p(xxx ,yyy) > 0,∀xxx ∈ ΩN ,∀yyy ∈ RN and ∀s ∈ S,
p(xs , ys |xxxS\s ,yyyS\s) = p(xs , ys |xxxNs ,yyyNs ).

� p(yyy |xxx) is a GMRF: We develop p(yyy |xxx) = exp(−E(xxx,yyy))∫
RN dyyy exp(−E(xxx,yyy))

to get the result by

using E (xxx ,yyy) =
∑2

n=1
∑

ccc∈Cn V̄n(yyyccc ,xxxccc) +
∑|N |

n=1
∑

ccc∈Cn Ṽn(xxxccc),

� Back to GPMF definition
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GPMF models: numerical applications
xxx yyy x̂xxBM+GC x̂xxpyIS x̂xxP−IN x̂xxGPMF

11.0% 5.1% 3.5% 3.3%

4.5% 6.6% 4.1% 3.2%

Unsupervised segmentation of images from the dataset

Remark: x̂xxpyIS from (Borovec et al. 2017) and x̂xxBM+GC from (Dabov et al. 2009)

� Back to GPMF numerical applications
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GPMF time complexity
� Stochastic Parameter Estimation algorithm

For T SPE iterations → T (T + 1)/2 total Gibbs sampler runs

For T = 30 → 465 Gibbs sampler runs ∼ 120 seconds (with r = 6)
� Image segmentation

Range of correlations P-IN GPMF

→ r = 1 15s 2min10s

→ r = 3 15s 3min20s

→ r = 6 15s 8min

Table: Time in MPM segmentation of a 130× 130 image
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Variational Inference in fcCRFs: numerical applications
xxx yyy x̂xxGMM x̂xxMFVI x̂xxMCVI

σ=150,
r=5 19.0% 11.3% 10.0%

σ=150,
r=2 21.3% 11.0% 9.6%

Supervised segmentations of images corrupted

→ Using MC VI always leads to an improvement of a few points in the segmentation
results of MF VI for very small additional computational cost

� Back to MC VI numerical applications
4/7
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