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Probabilistic graphical models

Very active research topic

Often used for unsupervised problems

Sparse models — fast and exact computations — hugeness some image data
(e.g. satellite images)

m Dense models — approximating methods — model very complex phenomena
(e.g. artifacts on medical images)

m Combined with deep learning — many top current results in image processing
(e.g. Variational Autoencoders)

1/14
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Notations:

m Vectors: x / Scalars: x

® Random variables: X: their realizations: x

m For a discrete random variable X — p({X = x}) is denoted p(X = x), or p(x)

m For a continuous random variable Y, p(y) is the density function of Y
Context of Bayesian segmentation:

m Segment an image with values in R into K classes {wi }xeq1,.. k) £Q

B X = (X5)ses with value in QIS — the hidden variables.

B Y = (Y.)ses with value in RISl — the observed variables.

m Segmentation criteria: — Maximum A Posteriori (MAP)
— Maximum Posterior Mode (MPM)
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Hidden Markov Models (HMM)

m Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

m Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

m Different models belong to the HMM family:

m Hidden and observed random variables
m Generative models — p(x,y) is modeled
m X is a Markovian process and p(y|x) = [[.cs p(ys|xs)
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Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)
p(x) is a Markov chain

Ys
XI T T I p(x,y) = pOx)p(yelxe) T T pOxslxe-)p(yslxs)

7 7T\ 4 -
seS

Hidden Markov Tree (HMT) (Laferté et al. 2000)
— a generalization of HMCs
Xs
p(x) is a Markov tree

p(x,y) — same as an HMC
Ys

inference — direct, exact computations with Forward-Backward based algorithm#
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Motivations

How could we introduce richer direct dependencies in HMMs ?

— Strong restrictions classically made in HMMs:
m X is constrained to be a Markov chain / tree
m The independent noise assumption p(y|x) = [[,cs P(ys|xs)
m More complex noise models: special cases of pairwise and triplet models

— Pairwise and Triplet (Hidden) Markov Models are richer models:
m Strict generalizations of HMMs (Gorynin et al. 2018)
m Conservation of the good properties of inference
m Naturally encompass extended HMMs models from the literature
m Triplet models integrate auxiliary random variables — link with deep learning
models
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Xs, Ys p(x,y) is a Markov tree

om lom lom lom p(x,y) :p(eryr) HseS‘p(XSay5|Xs—aYS—)

Triplet Markov Tree (TMT) (Courbot et al. 2018)

X, Vs, Ys p(x,v,y) is a Markov tree

o5E ObE O&E Don p(X, V:Y) = P(Xh Verr) HsgS P(X57 Vs:)’s’Xs*a Vs*:)/s*)
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Triplet assumptions

m Neither p(x), p(y), p(v), p(x,y), p(y,v), nor p(x,v) are necessarily
Markovian distributions

m But p(x,v|y) (and the others...) are Markovian distributions
— Inference can be done as in classical HMMs
— Original hidden states:

p(xly) = p(x,vly)

We now present the Spatial Triplet Markov Tree model:

— It takes advantage of the increased modeling possibilities
— It enhances the spatial correlations between random variables

7/14
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Spatial Triplet Markov Trees (STMTs)
Distribution of STMTs (Gangloff et al. 2020) (this paper):

p(X, Va.V) = p(Xr, Vra)/r) H P(Xsa Vs, Ys|Xs—, Vs_ays_)
seS
m Special design of V to improve spatial correlations in the classical HMT model.
VseS: Vo= (Vo, VN, VI v/ v= vy v v

m Quadtrees: each site s~has four sons (s"W, sNE s5E s5W) (except for last layer):

m We consider only observations Y at the finer resolution.
8/14
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STMTs: numerical applications
m Ising-like transitions to propagate spatial homogeneity:
1 _ _ .
p(Xs|xs—, vs—) = ~ exp <a5§j + Z B ), with (o, 8) € R3.
Vi—EV
m Simulate STMTs and restore with STMTs and HMTs (known «, [ parameters)

1.00 150

' 0.00
B o

With Ae = errymt — errsTiyT: relative error rate

— For all model parameters and noise levels STMT performs better than HMT

10/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

[e]e]e]e] }

Clamped sampling experiment

MF
(Potts potential)

STMT

[
(Potts-like potential) 6.8%

Average difference rate to
MRF (100 simulations)
L N

MT
(Potts-like potential)

14.2%

Clamped samplings of the original X process (last layer only)

— STMTs seem to capture the best the spatial context created by Markov Fields (MFs)
11/14
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Unsupervised parameter estimation

Case of independent Gaussian observations
We introduce Linear Least Square (LLS) estimator for o' and /3!

[, 5] = (BTB)'BTA
where the generic term of vector A is, Vs € St, V(xs, x!) € Q2,

P(X57Xs*7 Vs— |_Y) —In 1 (ys - Nx;)z +1In 1 ()/s - 'U’Xé)z

- +
P(x{s X5, Vs-y) \/2mo2, 202, fora?, 202

and the generic line of matrix B is

Bs, = |8 =05, > (5¥5’—5§27)

V— Evs_

As =1In
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Unsupervised parameter estimation

Case of independent Gaussian observations
Maximum Likelihood (ML) estimator for u! and o, Yw € Q :

t
Yoy = Yslrye—
W ZSGSL ]]_{Xt_w} SEZSL s H{xl=w}

and

NI=

1 2
Oy = 1 § (ys - Mct:;) I[{Xs‘f:w}
Ysest Lixt=w} 50

~

12/14
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Unsupervised parameter estimation

Algorithm 1: Iterative Parameter Estimation for Trees for STMTs.
Case Q = {w1,w»}

Data: 0% = {a®, 39, 12, 119,060,591, an initial set of parameters,
Hos K1, 90,01
y, the observations.
Result: 8* = {o*, 8%, ug, ui, 05, 01}, the estimated parameters.
Hos H1, 90,091
1t+1
2 while convergence is not attained do

3 1. MPM estimation:

RMPM .t argmax, p(xly,071), Vs € S

2. Estimation with the complete data ()?MPM’t,
e LLS estimator for o and 3¢

e ML estimator for p§ and pf

e ML estimator for o and o}

0t = {a*, 5, 1 i 08, 0L

10 t—t+1

y):

© 0 N o g »

12/14
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Unsupervised image segmentation experiment

Comparing Hidden Markov Fields (HMFs), HMTs and STMTs in unsupervised

segmentation:

o
Y
S

Error rate

Error rate in unsupervised segmentation function of the noise level

— STMTs greatly improve HMT results
— STMTs closer to HMF results

—— HMF
—— HMT
——STMT

13/14
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Unsupervised image segmentation experiment
x y XHME  XHMT — XSTMT

d ex: - s Ll e i ..
o=13 44.1% 30.9% 19.2%

Unsupervised segmentation HMF, HMT and STMT models
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Conclusion

Summary

m STMTs are generalizations of HMTs
— increased modeling possibilities
— strengthened spatial correlations

m Inference remains exact and deterministic

Perspectives

m Spatial correlations induced — theoretical links between STMTs and HMFs 7

m STMTs as the variational distribution for variational inference in trees with
semi-cycles as in (Gangloff et al. 2020) for 2D segmentation

14/14
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