

Unsupervised Image Segmentation with Spatial Triplet Markov Trees

Hugo Gangloff^{1,2,3} (hugo_gangloff@telecom-sudparis.eu), Jean-Baptiste Courbot⁴, Emmanuel Monfrini¹, Christophe Collet²

¹Samovar, Télécom SudParis, Institut Polytechnique de Paris, Palaiseau, France ²ICube, Université de Strasbourg, CNRS UMR 7357, Strasbourg, France ³GEPROVAS, Strasbourg, France ⁴IRIMAS UR 7499, Université de Haute-Alsace, Mulhouse, France

International Conference on Acoustics, Speech and Signal Processing 2021

June 06-11, 2021 - Toronto, Canada (virtual conference)

Outline

1 Introduction

2 Pairwise and Triplet Markov Models

3 Spatial Triplet Markov Trees

(4) Unsupervised image segmentation

6 Conclusion

Probabilistic graphical models

Very active research topic

- Very active research topic
- Often used for **unsupervised problems**

- Very active research topic
- Often used for unsupervised problems
- **Sparse models** \rightarrow fast and exact computations \rightarrow hugeness some image data (e.g. satellite images)

- Very active research topic
- Often used for unsupervised problems
- **Sparse models** \rightarrow fast and exact computations \rightarrow hugeness some image data (e.g. satellite images)
- **Dense models** \rightarrow approximating methods \rightarrow model very complex phenomena (e.g. artifacts on medical images)

- Very active research topic
- Often used for unsupervised problems
- **Sparse models** \rightarrow fast and exact computations \rightarrow hugeness some image data (e.g. satellite images)
- **Dense models** \rightarrow approximating methods \rightarrow model very complex phenomena (e.g. artifacts on medical images)
- Combined with deep learning \rightarrow many top current results in image processing (e.g. Variational Autoencoders)

Notations:

■ Vectors: **x** / Scalars: x

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

- Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$
- $X = (X_s)_{s \in S}$ with value in $\Omega^{|S|} \to$ the hidden variables.

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

- Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$
- $X = (X_s)_{s \in S}$ with value in $\Omega^{|S|} \to$ the hidden variables.
- $Y = (Y_s)_{s \in S}$ with value in $\mathbb{R}^{|S|} \to$ the observed variables.

Notations:

- Vectors: **x** / Scalars: x
- Random variables: X; their realizations: x
- For a discrete random variable $X \to p(\{X = x\})$ is denoted p(X = x), or p(x)
- For a continuous random variable Y, p(y) is the density function of Y

Context of Bayesian segmentation:

- Segment an image with values in \mathbb{R} into K classes $\{\omega_k\}_{k \in \{1,...,K\}} \triangleq \Omega$
- $X = (X_s)_{s \in S}$ with value in $\Omega^{|S|} \to$ the hidden variables.
- $\mathbf{Y} = (Y_s)_{s \in S}$ with value in $\mathbb{R}^{|S|} \to$ the observed variables.

 \rightarrow Maximum Posterior Mode (MPM)

00000

Hidden Markov Models (HMM)

 Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...

00000

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:

00000

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:
 - Hidden and observed random variables

00000

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:
 - Hidden and observed random variables
 - Generative models $\rightarrow p(\mathbf{x}, \mathbf{y})$ is modeled

00000

- Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular type of probabilistic models
- Applications in many contexts: image segmentation, speech processing, stock index forecasting, gene prediction, ...
- Different models belong to the HMM family:
 - Hidden and observed random variables
 - Generative models $\rightarrow p(\mathbf{x}, \mathbf{y})$ is modeled
 - **X** is a Markovian process and $p(\mathbf{y}|\mathbf{x}) = \prod_{s \in S} p(y_s|x_s)$

00000 0000 0000 000	Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
	00000				

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

00000 00000 0000 000 000 000	Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
	00000				

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

$$p(\mathbf{x}, \mathbf{y}) = p(x_r)p(y_r|x_r) \prod_{s \in \bar{S}} p(x_s|x_{s^-})p(y_s|x_s)$$

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
00000				

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

Hidden Markov Tree (HMT) (Laferté et al. 2000)

 \rightarrow a generalization of HMCs

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

Hidden Markov Tree (HMT) (Laferté et al. 2000)

 \rightarrow a generalization of HMCs

 $p(oldsymbol{x})$ is a Markov tree $p(oldsymbol{x},oldsymbol{y}) o$ same as an HMC

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

Hidden Markov Tree (HMT) (Laferté et al. 2000)

 \rightarrow a generalization of HMCs

 $p(\mathbf{x})$ is a Markov tree

 $p({m{x}},{m{y}})
ightarrow$ same as an HMC

inference \rightarrow direct, exact computations with Forward-Backward based algorithms

Outline

Introduction

2 Pairwise and Triplet Markov Models

3 Spatial Triplet Markov Trees

(4) Unsupervised image segmentation

6 Conclusion

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

How could we introduce richer direct dependencies in HMMs ?

 $\rightarrow\,$ Strong restrictions classically made in HMMs:

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - X is constrained to be a Markov chain / tree

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov chain / tree
 - The independent noise assumption $p(\mathbf{y}|\mathbf{x}) = \prod_{s \in S} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

How could we introduce richer direct dependencies in HMMs ?

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov chain / tree
 - The independent noise assumption $p(\mathbf{y}|\mathbf{x}) = \prod_{s \in S} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

 \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- $\rightarrow\,$ Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)
 - Conservation of the good properties of inference

Introduction	Pairwise and Triplet Markov Models ○●○○	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov chain / tree
 - The independent noise assumption $p(\mathbf{y}|\mathbf{x}) = \prod_{s \in S} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)
 - Conservation of the good properties of inference
 - Naturally encompass extended HMMs models from the literature

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

- $\rightarrow\,$ Strong restrictions classically made in HMMs:
 - \boldsymbol{X} is constrained to be a Markov chain / tree
 - The independent noise assumption $p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{s \in \mathcal{S}} p(y_s|x_s)$
 - More complex noise models: special cases of pairwise and triplet models

- \rightarrow Pairwise and Triplet (Hidden) Markov Models are richer models:
 - Strict generalizations of HMMs (Gorynin et al. 2018)
 - Conservation of the good properties of inference
 - Naturally encompass extended HMMs models from the literature
 - \blacksquare Triplet models integrate **auxiliary random variables** \rightarrow link with deep learning models

Pairwise and triplet assumptions

Pairwise Markov Tree (Pieczynski 2002)

$$p(m{x},m{y})$$
 is a Markov tree $p(m{x},m{y}) = p(x_r,y_r) \prod_{s\in ar{\mathcal{S}}} p(x_s,y_s|x_{s^-},y_{s^-})$

Pairwise and triplet assumptions

Pairwise Markov Tree (Pieczynski 2002)

Triplet Markov Tree (TMT) (Courbot et al. 2018)

Introduction	Pairwise and Triplet Markov Models ○○○●	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

Triplet assumptions

Neither p(x), p(y), p(v), p(x,y), p(y,v), nor p(x,v) are necessarily Markovian distributions

Introduction	Pairwise and Triplet Markov Models 000●	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

Triplet assumptions

- Neither p(x), p(y), p(v), p(x,y), p(y,v), nor p(x,v) are necessarily Markovian distributions
- **But** $p(\mathbf{x}, \mathbf{v} | \mathbf{y})$ (and the others...) are Markovian distributions
 - \rightarrow Inference can be done as in classical HMMs
 - \rightarrow Original hidden states:

$$p(oldsymbol{x}|oldsymbol{y}) = \sum_{oldsymbol{v}} p(oldsymbol{x},oldsymbol{v}|oldsymbol{y})$$

Introduction	Pairwise and Triplet Markov Models 000●	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion

Triplet assumptions

- Neither p(x), p(y), p(v), p(x,y), p(y,v), nor p(x,v) are necessarily Markovian distributions
- **But** $p(\mathbf{x}, \mathbf{v} | \mathbf{y})$ (and the others...) are Markovian distributions
 - \rightarrow Inference can be done as in classical HMMs
 - \rightarrow Original hidden states:

$$p(oldsymbol{x}|oldsymbol{y}) = \sum_{oldsymbol{v}} p(oldsymbol{x},oldsymbol{v}|oldsymbol{y})$$

We now present the Spatial Triplet Markov Tree model:

 \rightarrow It takes advantage of the increased modeling possibilities

 \rightarrow It enhances the spatial correlations between random variables

Outline

Introduction

2 Pairwise and Triplet Markov Models

3 Spatial Triplet Markov Trees

(4) Unsupervised image segmentation

6 Conclusion

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
		0000		

Distribution of STMTs (Gangloff et al. 2020) (this paper):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
		0000		

Distribution of STMTs (Gangloff et al. 2020) (this paper):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

• Special design of \boldsymbol{V} to improve spatial correlations in the classical HMT model. $\forall s \in \mathcal{S} : \boldsymbol{V}_s = (V^{\leftarrow}, V^{\leftarrow}, V^{\uparrow}, V^{
ightarrow}, V^{
ightarrow}, V^{\downarrow}, V^{\downarrow}, V^{\checkmark})$

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
		00000		

Distribution of STMTs (Gangloff et al. 2020) (this paper):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

- Special design of \boldsymbol{V} to improve spatial correlations in the classical HMT model. $\forall s \in S : \boldsymbol{V}_s = (V^{\leftarrow}, V^{\leftarrow}, V^{\uparrow}, V^{\rightarrow}, V^{\rightarrow}, V^{\downarrow}, V^{\downarrow}, V^{\checkmark})$
- Quadtrees: each site s^- has four sons $(s^{NW}, s^{NE}, s^{SE}, s^{SW})$ (except for last layer):

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
		00000		

Distribution of STMTs (Gangloff et al. 2020) (this paper):

$$p(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{y}) = p(x_r, \boldsymbol{v}_r, y_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s, \boldsymbol{v}_s, y_s | x_{s^-}, \boldsymbol{v}_{s^-}, y_{s^-})$$

- Special design of \boldsymbol{V} to improve spatial correlations in the classical HMT model. $\forall s \in S : \boldsymbol{V}_s = (\boldsymbol{V}^{\leftarrow}, \boldsymbol{V}^{\leftarrow}, \boldsymbol{V}^{\uparrow}, \boldsymbol{V}^{\rightarrow}, \boldsymbol{V}^{\searrow}, \boldsymbol{V}^{\downarrow}, \boldsymbol{V}^{\checkmark})$
- Quadtrees: each site s^- has four sons $(s^{NW}, s^{NE}, s^{SE}, s^{SW})$ (except for last layer):

• We consider only observations Y_s at the finer resolution.

Propagation of spatial information: the same color indicates the same probability law

Conclusion

Spatial Triplet Markov Trees

Unsupervised image segmentation $\circ \circ \circ$

Conclusion

Designing the auxiliary process in STMTs

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
		00000		

STMTs: numerical applications

■ Ising-like transitions to propagate spatial homogeneity:

$$p(x_s|x_{s^-}, \boldsymbol{v}_{s^-}) = \frac{1}{Z} \exp\left(\alpha \delta_{x_s}^{x_{s^-}} + \sum_{v_{s^-} \in \boldsymbol{v}_{s^-}} \beta \delta_{x_s}^{v_{s^-}}\right), \text{ with } (\alpha, \beta) \in \mathbb{R}^2_+.$$

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
		00000		

STMTs: numerical applications

■ Ising-like transitions to propagate spatial homogeneity:

$$p(x_s|x_{s^-}, \boldsymbol{v}_{s^-}) = \frac{1}{Z} \exp\left(\alpha \delta_{x_s}^{x_{s^-}} + \sum_{v_{s^-} \in \boldsymbol{v}_{s^-}} \beta \delta_{x_s}^{v_{s^-}}\right), \text{ with } (\alpha, \beta) \in \mathbb{R}^2_+.$$

Simulate STMTs and restore with STMTs and HMTs (known α , β parameters)

With $\Delta_e = err_{HMT} - err_{STMT}$: relative error rate

 \rightarrow For all model parameters and noise levels STMT performs better than HMT

Clamped sampling experiment

Clamped samplings of the original **X** process (last layer only)

ightarrow STMTs seem to capture the best the spatial context created by Markov Fields (MFs)

Conclusion

Outline

Introduction

2 Pairwise and Triplet Markov Models

3 Spatial Triplet Markov Trees

4 Unsupervised image segmentation

6 Conclusion

Unsupervised parameter estimation

Case of independent Gaussian observations We introduce Linear Least Square (LLS) estimator for α^t and β^t

$$[\alpha^t, \beta^t] = (B^T B)^{-1} B^T A$$

where the generic term of vector A is, $\forall s \in S^L$, $\forall (x_s, x'_s) \in \Omega^2$,

$$A_{s} = \ln \frac{p(x_{s}, x_{s^{-}}, \boldsymbol{v}_{s^{-}} | \boldsymbol{y})}{p(x'_{s}, x_{s^{-}}, \boldsymbol{v}_{s^{-}} | \boldsymbol{y})} - \ln \frac{1}{\sqrt{2\pi\sigma_{x_{s}}^{2}}} + \frac{(y_{s} - \mu_{x_{s}})^{2}}{2\sigma_{x_{s}}^{2}} + \ln \frac{1}{\sqrt{2\pi\sigma_{x'_{s}}^{2}}} + \frac{(y_{s} - \mu_{x'_{s}})^{2}}{2\sigma_{x_{s}}^{2}}$$

and the generic line of matrix B is

$$B_{s,:} = \left[\delta_{x_s}^{x_{s^-}} - \delta_{x'_s}^{x_{s^-}}, \sum_{v_{s^-} \in \mathbf{v}_{s^-}} \left(\delta_{x_s}^{v_{s^-}} - \delta_{x'_s}^{v_{s^-}} \right) \right]$$

Unsupervised parameter estimation

Case of independent Gaussian observations Maximum Likelihood (ML) estimator for μ^t and σ^t , $\forall \omega \in \Omega$:

$$\mu_{\omega}^{t} = \frac{1}{\sum_{s \in \mathcal{S}^{L}} \mathbb{1}_{\{x_{s}^{t} = \omega\}}} \sum_{s \in \mathcal{S}^{L}} y_{s} \mathbb{1}_{\{x_{s}^{t} = \omega\}}$$

and

$$\sigma_{\omega}^{t} = \left(\frac{1}{\sum_{s \in \mathcal{S}^{L}} \mathbb{1}_{\{x_{s}^{t} = \omega\}}} \sum_{s \in \mathcal{S}^{L}} \left(y_{s} - \mu_{\omega}^{t}\right)^{2} \mathbb{1}_{\{x_{s}^{t} = \omega\}}\right)^{\frac{1}{2}}$$

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
			000	

Unsupervised parameter estimation

Algorithm 1: Iterative Parameter Estimation for Trees for STMTs. Case $\Omega = \{\omega_1, \omega_2\}$

Data: $\boldsymbol{\theta}^0 = \{\alpha^0, \beta^0, \mu_0^0, \mu_1^0, \sigma_0^0, \sigma_1^0\}$, an initial set of parameters, \boldsymbol{y} , the observations. Result: $\boldsymbol{\theta}^* = \{\alpha^*, \beta^*, \mu_0^*, \mu_1^*, \sigma_0^*, \sigma_1^*\}$, the estimated parameters. 1 $t \leftarrow 1$

- 2 while convergence is not attained do
- 3 1. MPM estimation:

4
$$\hat{x}_{s}^{MPM,t} = \operatorname{argmax}_{x_{s}} p(x_{s}|\boldsymbol{y}, \boldsymbol{\theta}^{t-1}), \forall s \in S$$

- 5 2. Estimation with the complete data $(\hat{x}^{MPM,t}, y)$:
 - LLS estimator for α^t and β^t
 - ML estimator for μ_0^t and μ_1^t
 - ML estimator for σ_0^t and σ_1^t

$$\boldsymbol{\theta}^t \leftarrow = \{\alpha^t, \beta^t, \mu_0^t, \mu_1^t, \sigma_0^t, \sigma_1^t\}$$

10 $t \leftarrow t+1$

6

7

8 9

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
			000	

Unsupervised image segmentation experiment

Comparing Hidden Markov Fields (HMFs), HMTs and STMTs in unsupervised segmentation:

Error rate in unsupervised segmentation function of the noise level

 \rightarrow STMTs greatly improve HMT results \rightarrow STMTs closer to HMF results

Unsupervised image segmentation experiment

Unsupervised segmentation HMF, HMT and STMT models

Outline

Introduction

2 Pairwise and Triplet Markov Models

3 Spatial Triplet Markov Trees

(4) Unsupervised image segmentation

6 Conclusion

00000 0000 00000 000 0 00	Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
					00

Conclusion

Summary

- STMTs are generalizations of HMTs
 - \rightarrow increased modeling possibilities
 - \rightarrow strengthened spatial correlations
- Inference remains exact and deterministic

Introduction	Pairwise and Triplet Markov Models	Spatial Triplet Markov Trees	Unsupervised image segmentation	Conclusion
				00

Conclusion

Summary

- STMTs are generalizations of HMTs
 - \rightarrow increased modeling possibilities
 - \rightarrow strengthened spatial correlations
- Inference remains exact and deterministic

Perspectives

- Spatial correlations induced \rightarrow theoretical links between STMTs and HMFs ?
- STMTs as the variational distribution for variational inference in trees with semi-cycles as in (Gangloff et al. 2020) for 2D segmentation

References I

- L. E. Baum and T. Petrie. "Statistical inference for probabilistic functions of finite state Markov chains". In: The annals of mathematical statistics 37.6 (1966), pp. 1554–1563.
- [2] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: The annals of mathematical statistics 41.1 (1970), pp. 164–171.
- [3] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.
- [4] J.-B. Courbot, E. Monfrini, V. Mazet, and C. Collet. "Triplet markov trees for image segmentation". In: SSP 2018: IEEE Workshop on Statistical Signal Processing. IEEE Computer Society, 2018, pp. 233–237.
- [5] H. Gangloff, J.-B. Courbot, E. Monfrini, and C. Collet. "Spatial Triplet Markov Trees for auxiliary variational inference in Spatial Bayes Networks". In: Stochastic Modeling Techniques and Data Analysis international conference (SMTDA'20). 2020. In press.
- [6] S. Geman and D. Geman. "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images". In: IEEE Transactions on pattern analysis and machine intelligence 6 (1984), pp. 721–741.
- [7] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016.
- [8] I. Gorynin, H. Gangloff, E. Monfrini, and W. Pieczynski. "Assessing the segmentation performance of pairwise and triplet Markov models". In: Signal Processing 145 (2018), pp. 183–192.
- [9] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT Press, 2009.
- [10] J.-M. Laferté, P. Pérez, and F. Heitz. "Discrete Markov image modeling and inference on the quadtree". In: IEEE Transactions on image processing 9.3 (2000), pp. 390–404.
- [11] K. P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.
- [12] W. Pieczynski. "Arbres de Markov couple". In: Comptes Rendus Mathématique 335.1 (2002), pp. 79–82.