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Probabilistic graphical models

� Very active research topic

� Often used for unsupervised problems
� Sparse models → fast and exact computations → hugeness some image data

(e.g. satellite images)
� Dense models → approximating methods → model very complex phenomena

(e.g. artifacts on medical images)
� Combined with deep learning → many top current results in image processing

(e.g. Variational Autoencoders)
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Probabilistic graphical models: probabilistic setting

Notations:
� Vectors: xxx / Scalars: x

� Random variables: X ; their realizations: x
� For a discrete random variable X → p({X = x}) is denoted p(X = x), or p(x)

� For a continuous random variable Y , p(y) is the density function of Y
Context of Bayesian segmentation:
� Segment an image with values in R into K classes {ωk}k∈{1,...,K} , Ω

� XXX = (Xs)s∈S with value in Ω|S| → the hidden variables.
� YYY = (Ys)s∈S with value in R|S| → the observed variables.
� Segmentation criteria: → Maximum A Posteriori (MAP)

→ Maximum Posterior Mode (MPM)
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Hidden Markov Models (HMM)

� Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

� Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

� Different models belong to the HMM family:

� Hidden and observed random variables
� Generative models → p(xxx ,yyy) is modeled
� XXX is a Markovian process and p(yyy |xxx) =

∏
s∈S p(ys |xs)

3/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Hidden Markov Models (HMM)

� Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

� Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

� Different models belong to the HMM family:

� Hidden and observed random variables
� Generative models → p(xxx ,yyy) is modeled
� XXX is a Markovian process and p(yyy |xxx) =

∏
s∈S p(ys |xs)

3/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Hidden Markov Models (HMM)

� Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

� Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

� Different models belong to the HMM family:

� Hidden and observed random variables
� Generative models → p(xxx ,yyy) is modeled
� XXX is a Markovian process and p(yyy |xxx) =

∏
s∈S p(ys |xs)

3/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Hidden Markov Models (HMM)

� Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

� Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

� Different models belong to the HMM family:
� Hidden and observed random variables

� Generative models → p(xxx ,yyy) is modeled
� XXX is a Markovian process and p(yyy |xxx) =

∏
s∈S p(ys |xs)

3/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Hidden Markov Models (HMM)

� Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

� Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

� Different models belong to the HMM family:
� Hidden and observed random variables
� Generative models → p(xxx ,yyy) is modeled

� XXX is a Markovian process and p(yyy |xxx) =
∏

s∈S p(ys |xs)

3/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Hidden Markov Models (HMM)

� Hidden Markov Models (HMM) (Baum and Petrie 1966) are the most popular
type of probabilistic models

� Applications in many contexts: image segmentation, speech processing, stock
index forecasting, gene prediction, ...

� Different models belong to the HMM family:
� Hidden and observed random variables
� Generative models → p(xxx ,yyy) is modeled
� XXX is a Markovian process and p(yyy |xxx) =

∏
s∈S p(ys |xs)

3/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Hidden Markov Models: classical models

Hidden Markov Chain (HMC) (Baum, Petrie, et al. 1970)

Xs

Ys

p(xxx) is a Markov chain

p(xxx ,yyy) = p(xr )p(yr |xr )
∏
s∈S̄

p(xs |xs−)p(ys |xs)

Hidden Markov Tree (HMT) (Laferté et al. 2000)
→ a generalization of HMCs

Ys

Xs

p(xxx) is a Markov tree

p(xxx ,yyy)→ same as an HMC

inference → direct, exact computations with Forward-Backward based algorithms
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Motivations

How could we introduce richer direct dependencies in HMMs ?

→ Strong restrictions classically made in HMMs:

� XXX is constrained to be a Markov chain / tree
� The independent noise assumption p(yyy |xxx) =

∏
s∈S p(ys |xs)

� More complex noise models: special cases of pairwise and triplet models

→ Pairwise and Triplet (Hidden) Markov Models are richer models:

� Strict generalizations of HMMs (Gorynin et al. 2018)
� Conservation of the good properties of inference
� Naturally encompass extended HMMs models from the literature
� Triplet models integrate auxiliary random variables → link with deep learning

models
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Pairwise and triplet assumptions

Pairwise Markov Tree (Pieczynski 2002)

Xs ,Ys p(xxx ,yyy) is a Markov tree

p(xxx ,yyy) = p(xr , yr )
∏

s∈S̄ p(xs , ys |xs− , ys−)

Triplet Markov Tree (TMT) (Courbot et al. 2018)

Xs ,Vs ,Ys p(xxx ,vvv ,yyy) is a Markov tree

p(xxx ,vvv ,yyy) = p(xr , vr , yr )
∏

s∈S̄ p(xs , vs , ys |xs− , vs− , ys−)
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Triplet assumptions

� Neither p(xxx), p(yyy), p(vvv), p(xxx ,yyy), p(yyy ,vvv), nor p(xxx ,vvv) are necessarily
Markovian distributions

� But p(xxx ,vvv |yyy) (and the others...) are Markovian distributions
→ Inference can be done as in classical HMMs
→ Original hidden states:

p(xxx |yyy) =
∑
vvv

p(xxx ,vvv |yyy)

We now present the Spatial Triplet Markov Tree model:

→ It takes advantage of the increased modeling possibilities
→ It enhances the spatial correlations between random variables
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Spatial Triplet Markov Trees (STMTs)

Distribution of STMTs (Gangloff et al. 2020) (this paper):

p(xxx ,vvv ,yyy) = p(xr ,vvv r , yr )
∏
s∈S̄

p(xs ,vvv s , ys |xs− ,vvv s− , ys−)

� Special design of VVV to improve spatial correlations in the classical HMT model.
∀s ∈ S : VVV s = (V←,V↖,V ↑,V↗,V→,V↘,V ↓,V↙)

� Quadtrees: each site s−has four sons (sNW , sNE , sSE , sSW ) (except for last layer):

←

↖ ↑ ↗

→

↘↓↙

s−

NW←

↖ ↑ ↗

→

↘↓↙

sNW

NE←

↖ ↑ ↗

→

↘↓↙

sNE

SW←

↖ ↑ ↗

→

↘↓↙

sSW

SE←

↖ ↑ ↗

→

↘↓↙

sSE

X

V

� We consider only observations Ys at the finer resolution.
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Designing the auxiliary process in STMTs
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STMTs: numerical applications
� Ising-like transitions to propagate spatial homogeneity:

p(xs |xs− ,vvv s−) =
1
Z

exp

(
αδ

xs−
xs +

∑
vs−∈vvv s−

βδ
vs−
xs

)
, with (α, β) ∈ R2

+.

� Simulate STMTs and restore with STMTs and HMTs (known α, β parameters)
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With ∆e = errHMT − errSTMT : relative error rate

→ For all model parameters and noise levels STMT performs better than HMT

10/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

STMTs: numerical applications
� Ising-like transitions to propagate spatial homogeneity:

p(xs |xs− ,vvv s−) =
1
Z

exp

(
αδ

xs−
xs +

∑
vs−∈vvv s−

βδ
vs−
xs

)
, with (α, β) ∈ R2

+.

� Simulate STMTs and restore with STMTs and HMTs (known α, β parameters)

0.00 0.50 1.00 1.50
0.50

1.00
1.50

0.05

0.10

αβ

∆
e

0.50 1.00 1.50
0.50

1.00
1.50

0.05

0.10

∆µ
σ

∆
e

With ∆e = errHMT − errSTMT : relative error rate

→ For all model parameters and noise levels STMT performs better than HMT
10/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Clamped sampling experiment

MF
(Potts potential)

...
Average difference rate to
MRF (100 simulations)

STMT
(Potts-like potential)

... 6.8%

MT
(Potts-like potential)

... 14.2%

Clamped samplings of the original XXX process (last layer only)

→ STMTs seem to capture the best the spatial context created by Markov Fields (MFs)
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Unsupervised parameter estimation

Case of independent Gaussian observations
We introduce Linear Least Square (LLS) estimator for αt and βt

[αt , βt ] = (BTB)−1BTA

where the generic term of vector A is, ∀s ∈ SL, ∀(xs , x
′
s) ∈ Ω2,

As = ln
p(xs , xs− ,vvv s− |yyy)

p(x ′s , xs− ,vvv s− |yyy)
− ln

1√
2πσ2

xs

+
(ys − µxs )2

2σ2
xs

+ ln
1√
2πσ2

x ′s

+
(ys − µx ′s )

2

2σ2
xs

and the generic line of matrix B is

Bs,: =

δxs−xs − δ
xs−
x ′s

,
∑

vs−∈vvv s−

(
δ
vs−
xs − δ

vs−
x ′s

)
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Unsupervised parameter estimation

Case of independent Gaussian observations
Maximum Likelihood (ML) estimator for µµµt and σσσt , ∀ω ∈ Ω :

µtω =
1∑

s∈SL 1{x ts =ω}

∑
s∈SL

ys1{x ts =ω}

and

σtω =

 1∑
s∈SL 1{x ts =ω}

∑
s∈SL

(
ys − µtω

)2
1{x ts =ω}

 1
2

12/14
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Unsupervised parameter estimation
Algorithm 1: Iterative Parameter Estimation for Trees for STMTs.
Case Ω = {ω1, ω2}

Data: θθθ0 = {α0, β0, µ0
0, µ

0
1, σ

0
0, σ

0
1}, an initial set of parameters,

yyy , the observations.
Result: θθθ∗ = {α∗, β∗, µ∗0, µ∗1, σ∗0, σ∗1}, the estimated parameters.

1 t ← 1
2 while convergence is not attained do
3 1. MPM estimation:
4 x̂MPM,t

s = argmaxxsp(xs |yyy , θθθt−1), ∀s ∈ S
5 2. Estimation with the complete data (x̂xxMPM,t ,yyy):
6 • LLS estimator for αt and βt

7 • ML estimator for µt0 and µt1
8 • ML estimator for σt0 and σt1
9 θθθt ←= {αt , βt , µt0, µ

t
1, σ

t
0, σ

t
1}

10 t ← t + 1
11 end
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Unsupervised image segmentation experiment

Comparing Hidden Markov Fields (HMFs), HMTs and STMTs in unsupervised
segmentation:

0.2 0.4 0.6 0.8 1 1.2 1.4
0.00

0.20

0.40

σ

Er
ro

r
ra

te

HMF
HMT
STMT

Error rate in unsupervised segmentation function of the noise level

→ STMTs greatly improve HMT results
→ STMTs closer to HMF results
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Unsupervised image segmentation experiment
xxx yyy x̂xxHMF x̂xxHMT x̂xxSTMT

σ = 0.5 2.5% 12.6% 5.7%

σ = 0.9 5.0% 20% 7.9%

σ = 1.3 44.1% 30.9% 19.2%

Unsupervised segmentation HMF, HMT and STMT models
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Conclusion

Summary
� STMTs are generalizations of HMTs
→ increased modeling possibilities
→ strengthened spatial correlations

� Inference remains exact and deterministic

Perspectives
� Spatial correlations induced → theoretical links between STMTs and HMFs ?
� STMTs as the variational distribution for variational inference in trees with

semi-cycles as in (Gangloff et al. 2020) for 2D segmentation

14/14



Introduction Pairwise and Triplet Markov Models Spatial Triplet Markov Trees Unsupervised image segmentation Conclusion

Conclusion

Summary
� STMTs are generalizations of HMTs
→ increased modeling possibilities
→ strengthened spatial correlations

� Inference remains exact and deterministic

Perspectives
� Spatial correlations induced → theoretical links between STMTs and HMFs ?
� STMTs as the variational distribution for variational inference in trees with

semi-cycles as in (Gangloff et al. 2020) for 2D segmentation

14/14



Appendices References

References I

[1] L. E. Baum and T. Petrie. “Statistical inference for probabilistic functions of finite state Markov chains”. In: The annals of
mathematical statistics 37.6 (1966), pp. 1554–1563.

[2] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. “A maximization technique occurring in the statistical analysis of
probabilistic functions of Markov chains”. In: The annals of mathematical statistics 41.1 (1970), pp. 164–171.

[3] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[4] J.-B. Courbot, E. Monfrini, V. Mazet, and C. Collet. “Triplet markov trees for image segmentation”. In: SSP 2018: IEEE
Workshop on Statistical Signal Processing. IEEE Computer Society, 2018, pp. 233–237.

[5] H. Gangloff, J.-B. Courbot, E. Monfrini, and C. Collet. “Spatial Triplet Markov Trees for auxiliary variational inference in
Spatial Bayes Networks”. In: Stochastic Modeling Techniques and Data Analysis international conference (SMTDA’20). 2020.
In press.

[6] S. Geman and D. Geman. “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images”. In: IEEE
Transactions on pattern analysis and machine intelligence 6 (1984), pp. 721–741.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016.

[8] I. Gorynin, H. Gangloff, E. Monfrini, and W. Pieczynski. “Assessing the segmentation performance of pairwise and triplet
Markov models”. In: Signal Processing 145 (2018), pp. 183–192.

[9] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT Press, 2009.

[10] J.-M. Laferté, P. Pérez, and F. Heitz. “Discrete Markov image modeling and inference on the quadtree”. In: IEEE
Transactions on image processing 9.3 (2000), pp. 390–404.

[11] K. P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

[12] W. Pieczynski. “Arbres de Markov couple”. In: Comptes Rendus Mathématique 335.1 (2002), pp. 79–82.

1/1


	Introduction
	Pairwise and Triplet Markov Models
	Spatial Triplet Markov Trees
	Unsupervised image segmentation
	Conclusion
	Appendix
	Appendices
	References


