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MOTIVATIONS
Probabilistic graphical models are widely used in unsupervised image segmen-

tation. Direct dependencies between random variables are introduced to model

potentially complex phenomena but many constraints exist to maintain the

model tractability: such a compromise is successfully made in Hidden Markov

Models. They are then a famous family of probabilistic graphical models [1].

OBJECTIVES
• Generalization of Markov Trees to enhance the spatial interactions for

image segmentation: Spatial Triplet Markov Trees (STMTs).

• Exact and deterministic inference in the new model as in classical Hidden

Markov Trees (HMTs) [2].

• Design a parameter estimation procedure for unsupervised segmentation.

SPATIAL TRIPLET MARKOV TREES
XXX is a discrete hidden process, VVV is a discrete auxiliary process and YYY is a continuous observed process. In the STMT model, at each site s ∈ S, VVV s is an octuplet,

i.e., VVV s = (V ←, V ↖, V ↑, V ↗, V →, V ↘, V ↓, V ↙). The triplet (XXX,VVV ,YYY ) is a Markov tree with L resolutions:

p(xxx,vvv,yyy) = p(xr, vvvr, yr)
∏

s∈S\SL
p(xs, vvvs, ys|xs−, vvvs−, ys−), with, ∀s /∈ SL,

p(xs, vvvs, ys|xs−, vvvs−, ys−) = p(xs|xs−, vvvs−)p(v→s |xs−, vvvs−)p(v↘s |xs−, vvvs−)p(v↓s|xs−, vvvs−)p(v←s |xs−, vvvs−)p(v↖s |xs−, vvvs−)p(v↑s|xs−, vvvs−)p(v↗s |xs−, vvvs−)p(v↙s |xs−, vvvs−)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Note that ∀s /∈ SL, ys is not modeled and ∀s ∈ SL, p(ys|xs−, vs−, ys−, xs, vs) = p(ys|xs) (independent Gaussian noise).
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Equations for the transition in red:
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We introduce Ising-like transitions, ∀s ∈ S:

p(xs|xs−, vvvs−) =
1

Z
exp

(
αδxs−xs +

∑
vs−∈vvvs−

βδvs−xs

)
, (α, β) ∈ R2

+.

Figure 1: The first three resolutions of a STMT: details on the modeling of the transitions. The sites where the random variables have the same law are

represented with the same color. This then highlights the spatial homogeneity that is transmitted layer after layer: in the new model, a process Xs is sampled

with information from the father’s neighbors. The variables that remain uncolored do not serve our illustration.

PARAMETER ESTIMATION & INFERENCE
Parameter estimation: Stochastic Expectation-Maximization as in [3]:

→ Linear Least-Square estimator for α and β.

→ Maximum Likelihood estimator for the noise parameter.

Inference: Generalized Upward-Downward algorithm for Triplet Trees [2]:

∀s ∈ S, p(xs|ys) =
∑
vvvs

p(xs, vvvs|ys) =
∑
vvvs

αs(xs, vvvs)βs(xs, vvvs),

where αs and βs are the upward and downward probabilities.

RESULTS
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Figure 2: Error rate in unsupervised segmentation for varying noise level.

→ STMTs greatly improve HMT results and are closer to HMF results.

CONCLUSION
• STMTs outperform classical HMTs in unsupervised image segmentation:

stronger spatial correlations with still an exact inference procedure.

• Study of the theoretical links between Markov fields and STMTs.

• Towards a deterministic counterpart of Markov fields ?
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