
SGM_GTAP

July 8, 2025

1 Introduction to score-based generative models
Hugo Gangloff 12/06/25

Modified version of the SGM tutorial by Jakiw Pidstrigach: https://jakiw.com/sgm_intro.

Summary:

1. Preamble: negative impacts
2. Score-based generative models: key equations
3. Score based generative models: a simple JAX implementation

• Setting up the environment
• Loss function and Update step
• Neural network training
• Sampling from the reverse SDE with the score s_�(x,t)

1.0.1 Preamble: negative impacts

� Mainstream use of diffusion models is that of image generation which is by far the most carbon
hungry type of inference (see graph below) and requires some of the biggest GPU architectures
to run. Then we should also talk about water and raw material consumption, rebound effect and
societal impacts, composition and curation of datasets, etc.

Power Hungry Processing: Watts Driving the Cost of AI Deployment?, Luccioni, Jernite, Strubell,
https://arxiv.org/pdf/2311.16863

1

� Now we have text to video https://stability.ai/stable-video

� But today, to explore key concepts, we will work in a relatively sober ℝ2 space and we will not
even need a GPU

2 Score-based generative models: key equations
� The equations are written for unidimensional 𝑋𝑡

Given access to samples {𝑥𝑖} from a target density 𝜇data, generative models have the
task to generate more samples from 𝜇data.

• The forward SDE adds noise to the data. The forward SDE is run until some terminal time
𝑇 . Often, it is an Ornstein Ulhenbeck process.

d𝑋𝑡 = −1
2𝛽𝑡𝑋𝑡 + √𝛽𝑡d𝐵𝑡,

𝑋0 ∼ 𝜇data.

We define 𝛼𝑡 = ∫𝑡
0 𝛽𝑠d𝑠. Then the transition kernel of 𝑋𝑡 is given as

𝑝𝑡|0(𝑥𝑡|𝑥0) = 𝒩(𝑚𝑡𝑥0, 𝑣𝑡),

where

𝑚𝑡 exp(−1
2𝛼𝑡)

𝑣𝑡 1 − exp(−𝛼𝑡)

• The reverse SDE enables to sample from 𝜇data if started in the distribution 𝑌0 ∼ 𝑝𝑇 .

𝑑𝑌𝑡 = 1
2𝛽𝑇 −𝑡𝑌𝑡 + 𝛽𝑇 −𝑡∇ log 𝑝𝑇 −𝑡(𝑌𝑡) + √𝛽𝑇 −𝑡d𝐵𝑡.

• Noise schedule: in what’s above, we will employ the function

𝛽𝑡 = 𝛽min + 𝑡(𝛽max − 𝛽min).

In this case we get
𝛼𝑡 = 𝑡𝛽min + 1

2𝑡2(𝛽max − 𝛽min).

𝛽min = 0.001, 𝛽max = 3.
(See Jakiw original tutorial for some references and more discussion)

• Time interval: we will always run the forward SDE until time 𝑇 = 1. Therefore, the time
interval for the backward SDE is also [0, 1]. We discretize this time interval into discrete
times (𝑡𝑖)𝑅

𝑖=1, 𝑡0 = 0, 𝑡𝑅 = 1 and run the above scheme.

2

The problems We cannot access the marginals 𝑝𝑡 of the forward SDE, since we do not know
𝑝0 = 𝜇data. This leads to the following two problems.

1. We do not have access to 𝑝𝑇 , the initial condition of the the reverse SDE,
2. For the same reason we do not know 𝑝𝑡 and therefore the drift ∇ log 𝑝𝑇 −𝑡 of the

reverse SDE.

As you may have guessed, there are answers to the above:

1. The marginals of an Ornstein-Uhlenbeck converge to 𝒩(0, 𝐼) at an exponential speed
𝑝𝑡 → 𝒩(0, 𝐼), independently of 𝑝0. Therefore, we can start the reverse SDE in
𝑞0 = 𝒩(0, 𝐼) ≈ 𝑝𝑇 . Notably, we do not need the forward SDE in our process.

2. We train a neural network approximation 𝑠𝜃(𝑥, 𝑡) ≈ ∇ log 𝑝𝑡(𝑥) using score match-
ing, to be able to run the reverse SDE.

The loss We train a Neural Network to approximate ∇ log 𝑝𝑡. We do this by so-called Score-
Matching Techniques. The optimal loss we would like to minimize is

𝐿(𝜃, 𝑡) = 𝔼𝑥∼𝑝𝑡(𝑥)[‖∇ log 𝑝𝑡(𝑥) − 𝑠𝜃(𝑥, 𝑡)‖2] = 𝔼𝑥0∼𝜇data
𝔼𝑥∼𝑝𝑡,0(𝑥|𝑥0)[‖∇ log 𝑝𝑡(𝑥) − 𝑠𝜃(𝑥, 𝑡)‖2]

But its usage is not possible. We can show that (see original Jakiw tutorial) we can use the
denoising score matching objective objective

�̄�(𝜃, 𝑡) = 𝔼𝑥0∼�̂�data
𝔼𝑥∼𝑝𝑡,0(𝑥|𝑥0)[‖∇ log 𝑝𝑡,0(𝑥𝑡|𝑥0) − 𝑠𝜃(𝑥, 𝑡)‖2],

Since 𝑝𝑡,0 is Gaussian we can fully evaluate the above gradient as

∇ log 𝑝𝑡,0(𝑥|𝑥0) = ∇ log ((2𝜋𝑣𝑡)−𝑑/2 exp(−‖𝑥 − 𝑚𝑡𝑥0‖2

2𝑣𝑡
)) = −(𝑥 − 𝑚𝑡𝑥0)

𝑣𝑡
.

Finally, we want to optimize the network for all 𝑡, not just one specific 𝑡, and therefore define

�̄�(𝜃) = 𝔼𝑡∼𝑈[0,1][�̄�(𝜃, 𝑡)].

This loss can now be approximated by randomly choosing datapoints from the training batch (as
samples from ̂𝜇data and also randomly generating times 𝑡 ∼ 𝑈[0, 1]).
Note that in the code below, the loss will be implemented with the simplification:

𝔼𝑥0∼�̂�data
𝔼𝑥∼𝑝𝑡,0(𝑥|𝑥0)[‖∇ log 𝑝𝑡,0(𝑥𝑡|𝑥0)−𝑠𝜃(𝑥, 𝑡)‖2] = 𝔼𝑥0∼�̂�data

𝔼𝑧∼𝑁(0,1)[‖−
(√𝑣𝑡𝑧 + 𝑚𝑡𝑥0 − 𝑚𝑡𝑥0)

𝑣𝑡
−𝑠𝜃(𝑥, 𝑡)‖2]

Hence

𝔼𝑥0∼�̂�data
𝔼𝑥∼𝑝𝑡,0(𝑥|𝑥0)[‖∇ log 𝑝𝑡,0(𝑥𝑡|𝑥0) − 𝑠𝜃(𝑥, 𝑡)‖2] ∝ 𝔼𝑥0∼�̂�data

𝔼𝑧∼𝑁(0,1)[‖𝑧 + √𝑣𝑡𝑠𝜃(𝑥, 𝑡)‖2]

3

3 Score-based generative models: a simple JAX implementation
3.0.1 Setting up the environment

The most straightforward approach is to create a new Python environment

{bash} conda create -n sgm python=3.13 conda activate sgm pip install jax[cuda12]
jaxlib equinox optax matplotlib jupyter jaxtyping tqdm

Note: get rid of [cuda12] for a CPU installation

3.0.2 Python imports

[1]: import os
os.environ["JAX_PLATFORMS"]="cpu"

[2]: from functools import partial

import jax
import jax.numpy as jnp
from jax import jit, grad, vmap
import equinox as eqx
import matplotlib.pyplot as plt
import optax
from jaxtyping import PyTree, Array, Key, Float
from tqdm import tqdm
plt.rcParams["figure.figsize"] = (3, 3)

[3]: key = jax.random.key(0) # create the original key from seed=0

3.0.3 Generate samples from 𝜇data

[4]: def sample_sphere(J: int):
"""
2 dimensional sample

N_samples: Number of samples
Returns a (N_samples, 2) array of samples
"""
alphas = jnp.linspace(0, 2*jnp.pi * (1 - 1/J), J)
xs = jnp.cos(alphas)
ys = jnp.sin(alphas)
mf = jnp.stack([xs, ys], axis=1)
return mf

[5]: J = 8
mf = sample_sphere(J)
plt.scatter(mf[:, 0], mf[:, 1])
plt.show()

4

3.0.4 Time discretization

[6]: R = 1000
train_times = jnp.arange(1, R) / (R-1)

3.0.5 Some helper functions

[7]: beta_min = 0.001
beta_max = 3

def beta_t(t: float):
"""
t: time
returns beta_t as explained above
"""
return beta_min + t*(beta_max - beta_min)

def alpha_t(t: float):
"""
t: time
returns alpha_t as explained above
"""
return t*beta_min + 0.5 * t**2 * (beta_max - beta_min)

def drift(x: Float[Array, "n_samples N"], t:float):
"""
x: location of J particles in N dimensions, shape (J, N)
t: time

5

returns the drift of a time-changed OU-process for each batch member, shape␣
↪(J, N)

"""
return -0.5*beta_t(t)*x

def dispersion(t:float):
"""
t: time
returns the dispersion
"""
return jnp.sqrt(beta_t(t))

3.0.6 Initialize the neural network

equinox: One of the three big JAX neural network libraries (with Haiku and Flax). We like it
because the modules are Python immutable dataclasses: strict rules that play nicely with JAX for
code clarity and efficiency. [link to the documentation]

[8]: # We need a random key for the neural network module
initialization: explicit random key handling
key, subkey = jax.random.split(key)

#initialize the model weights
score_model = eqx.nn.MLP(

in_size=6, # x (2D) + t (4D) concatenated in entry. Will have some time␣
↪embedding additional input

out_size=2, # \nabla log p_{T-t}(x_{T-t}) is 2D if x is 2D
width_size=256,
depth=4,
activation=jax.nn.relu,
key=subkey

)

Now, a point that is specific to equinox:

[9]: # score_model includes several things that aren't parameters!
We need to split our model into the bit we want to differentiate (its␣

↪parameters),
and the bit we don't (everything else), this is done with the filter spec␣

↪argument
score_params_init, score_static = eqx.partition(score_model, filter_spec=eqx.

↪is_array)
Later on, we reconstruct score_model with eqx.partition to apply it

3.0.7 Initialize the optimizer

optax: Most popular optimization library in the JAX ecosystem. Quite similar to Pytorch opti-
mizers but again, we need to explicitly take care of the optimizer state that is updated along the

6

epoch (same philosophy as JAX random keys). We like it because optax is built as functions that
transform optimizer states (Python NamedTuples), and nothing more! [link to the documentation]

[10]: #Initialize the optimizer
batch_size = 16
optimizer = optax.adam(1e-3)
opt_state = optimizer.init(score_params_init)

3.0.8 Loss function and Update step

Define a loss function and an update step. The update step basically takes the gradient of the loss
function and then applies a gradient descent (or rather ADAM) step, to update the current weights
with the attained gradient. The full update_step function can be jitted (compiled), making the
whole process very fast.

Vectorized computations with JAX: As you may have noticed, we did not mention the batch
dimension when instanciating the neural network. This is the classical way to work in JAX:
functions are defined (mathematically), for one sample, and we extend them to work on batchs
afterwards with JAX vmap function: [link to the doc].

[11]: def loss_fn(
score_params: PyTree,
score_static: PyTree,
key: Key,
batch_x0: Float[Array, "batch_size 2"]

) -> Float[Array, " "]:
r"""
returns an random (MC) approximation to the loss \bar{L} explained above
"""
score_model = eqx.combine(score_params, score_static) # reconstruct the NN␣

↪to be able to apply it
vectorization of the score_model.__call__() function with vmap
score_model signature: R^6 -> R^2
vectorized_score_model = jax.vmap(score_model)
vectorized_score_model signature: R^bx6 -> R^bx2 where b is the batch␣

↪dimension

key, subkey = jax.random.split(key)

t = jax.random.choice(subkey, train_times, (batch_size, 1)) # t \sim U[0, 1]

mean_coeff = jnp.exp(-0.5 * alpha_t(t)) # mean of p_{t|0}(x_t | x_0)
stds = jnp.sqrt(1 - jnp.exp(-alpha_t(t))) # std of p_{t|0}(x_t | x_0)

key, subkey = jax.random.split(key)
noise = jax.random.normal(subkey, batch_x0.shape)

2D sampling of Xt:

7

mean_coeff and stds are (batch_size, 1) thus broadcastable with
batch_x0 and noise which are (batch_size, 2)
Xt = batch_x0 * mean_coeff + noise * stds # Xt \sim p_{t,0}(x | x_0)

encode t with some Fourier features before feeding it to the score NN
t_enc = jnp.concatenate([t - 0.5, jnp.cos(2*jnp.pi*t), jnp.sin(2*jnp.pi*t),␣

↪-jnp.cos(4*jnp.pi*t)],axis=1)

s_x_t = vectorized_score_model(jnp.concatenate([Xt, t_enc], axis=1)) #␣
↪s_theta(x,t)

loss = jnp.mean(jnp.sum((stds * s_x_t + noise)**2, axis=-1))

return loss

Computing derivatives with JAX: the functional approach is very mathematically pleasing when it
comes to differentiation. Just call df=jax.grad(f) and you get back a function df that is simply the
derivative of f. There are functions to compute derivatives in JAX with many different options:
[link to the documentation].

Just in Time compilation with JAX: One of JAX key concepts is Just-In-Time (JIT) compilation
which greatly improves performances by pre computing some operations. Below the update step is
decorated in order to be jitted. Some constrains apply: not all functions can be jitted (they need
to be pure) and arguments that cannot be traced (~ do not mix well with the precomputations,
i.e., all non-valid JAX types, i.e., all that is not jnp.arrays, PyTree of jnp.arrays or custom class
with explicit flatten/unflatten) should be marked as static: [link to the documentation]

[12]: @partial(jit, static_argnums=[1])
def update_step(

score_params: PyTree,
score_static: PyTree,
key: Key,
batch_x0: Float[Array, "batch_size 2"],
opt_state: optax.OptState

) -> tuple[Float[Array, " "], PyTree, optax.OptState]:
"""

takes the gradient of the loss function and updates the model weights␣
↪(params) using it. Returns

the value of the loss function (for metrics), the new params and the new␣
↪optimizer state

"""
here we use the jax.value_and_grad function. jax.value_and_grad(loss_fn)␣

↪is itself a function with
the same arguments as loss_fn which returns two values the value of␣

↪loss_fn and the derivative of loss_fn
when evaluated at (score_params, score_static, key, batch_x0)

8

val, grads = jax.value_and_grad(loss_fn)(score_params, score_static, key,␣
↪batch_x0)

updates, opt_state = optimizer.update(grads, opt_state)
score_params = optax.apply_updates(score_params, updates)
return val, score_params, opt_state

3.1 Neural network training

[13]: score_params = score_params_init # rerun this cell to reset parameters

[14]: N_epochs = 60000 # 60000 we start to see overfitting to the eight-sample␣
↪dataset -> Early stopping seems a critical aspect here

train_size = mf.shape[0]
batch_size = train_size
batch_size = min(train_size, batch_size)
steps_per_epoch = train_size // batch_size
losses = []
for k in tqdm(range(N_epochs)):

key, subkey = jax.random.split(key)

Note that the dataset is ridiculously small and all the manipulations␣
↪below are not really needed

perms = jax.random.permutation(subkey, train_size)
perms = perms[:steps_per_epoch * batch_size] # skip incomplete batch
perms = perms.reshape((steps_per_epoch, batch_size))
for perm in perms:

batch_x0 = mf[perm, :]
key, subkey = jax.random.split(key)
loss, score_params, opt_state = update_step(score_params, score_static,␣

↪subkey, batch_x0, opt_state)
losses.append(loss)

if (k+1) % 5000 == 0:
mean_loss = jnp.mean(jnp.array(losses))
print("Epoch %d \t, Loss %f " % (k+1, mean_loss))
losses = []

9%|���� | 5112/60000 [00:05<01:39, 549.88it/s]

Epoch 5000 , Loss 1.013629

17%|������ | 10111/60000 [00:11<00:59, 841.77it/s]

Epoch 10000 , Loss 0.869420

25%|��������� | 15143/60000 [00:16<01:10, 638.78it/s]

Epoch 15000 , Loss 0.815488

34%|������������ | 20165/60000 [00:21<01:03, 629.51it/s]

Epoch 20000 , Loss 0.787861

9

42%|��������������� | 25159/60000 [00:26<01:04, 541.63it/s]

Epoch 25000 , Loss 0.761295

50%|������������������ | 30140/60000 [00:31<00:31, 942.66it/s]

Epoch 30000 , Loss 0.751818

59%|��������������������� | 35191/60000 [00:36<00:38, 640.45it/s]

Epoch 35000 , Loss 0.750592

67%|������������������������ | 40105/60000 [00:41<00:33, 587.99it/s]

Epoch 40000 , Loss 0.747150

75%|��������������������������� | 45091/60000 [00:45<00:21, 693.23it/s]

Epoch 45000 , Loss 0.739544

84%|������������������������������ | 50108/60000 [00:50<00:13, 721.10it/s]

Epoch 50000 , Loss 0.741000

92%|��������������������������������� | 55169/60000 [00:55<00:07, 639.68it/s]

Epoch 55000 , Loss 0.730837

100%|������������������������������������| 60000/60000 [01:00<00:00, 989.14it/s]

Epoch 60000 , Loss 0.731699

• Running time on a Nvidia T600 Laptop GPU with Cuda 12.8: [01:41<00:00, 592.12it/s]
• Running time on Intel i7 CPU: [01:00<00:00, 989.14it/s]

3.2 Sampling from the reverse SDE with the score 𝑠𝜃(𝑥, 𝑡)
The reverse SDE is implemented using the Euler-Maryuama scheme. To advance the SDE by 𝛿𝑡,
we implement the following iteration,

𝑌𝑡𝑖+1
= 𝑌𝑡𝑖

+ (𝑡𝑖+1 − 𝑡𝑖) (1
2𝛽𝑇 −𝑡𝑖

𝑌𝑡𝑖
+ 𝛽𝑇 −𝑡𝑖

𝑠𝜃(𝑌𝑡𝑖
, 𝑡𝑖)) + 𝑍𝑡𝑖+1−𝑡𝑖

,

where 𝑍𝑡𝑖+1−𝑡𝑖
is a random variable with distribution

𝑍𝑡𝑖+1−𝑡𝑖
∼ 𝒩(0, (𝑡𝑖+1 − 𝑡𝑖)√𝛽𝑇 −𝑡),

and where we hope that

𝑠𝜃(𝑌𝑡𝑖
, 𝑡𝑖) ≈ ∇ log 𝑝𝑇 −𝑡𝑖

(𝑌𝑡𝑖
).

The time interval for the backward SDE is also [0, 𝑇], we set 𝑇 = 1. We keep the discretization in
R time steps defined above.

Recall that we set 𝑇 = 1.

10

Optimized for loops with JAX: when for loops are unavoidable, for example in purely iterative
algorithms such as Euler Maruyama, JAX offers the jax.lax.scan function whose content is auto-
matically jitted. [link to the documentation]

[15]: T = 1

def reverse_sde(
key: Key,
N: int,
n_samples: int,
score_model: eqx.Module

) -> Float[Array, "n_samples N"]:
"""
Eular Maruyama in N dimensions

Run a scan loop for all the n_samples samples in parallel
"""
vectorized_score_model = jax.vmap(score_model)

def f(carry, times):
t, dt = times
x, key = carry
disp = dispersion(T - t)
t = T - jnp.ones((x.shape[0], 1)) * t
t_enc = jnp.concatenate([t - 0.5, jnp.cos(2*jnp.pi*t), jnp.sin(2*jnp.

↪pi*t), -jnp.cos(4*jnp.pi*t)],axis=1)

reverse_drift = -drift(x, T - t) + disp ** 2 *␣
↪vectorized_score_model(jnp.concatenate([x, t_enc], axis=1))

key, subkey = jax.random.split(key)
noise = jax.random.normal(subkey, x.shape)

x = x + dt * reverse_drift + jnp.sqrt(dt) * disp * noise
return (x, key), x

key, subkey = jax.random.split(key)
initial = jax.random.normal(subkey, (n_samples, N))
dts = train_times[1:] - train_times[:-1]
times = jnp.stack([train_times[:-1], dts], axis=1)
key, subkey = jax.random.split(key)
(x, _), samples = jax.lax.scan(f, (initial, subkey), times)
return samples

[16]: key, subkey = jax.random.split(key)
score_model = eqx.combine(score_params, score_static)
samples = reverse_sde(subkey, 2, 5000, score_model)

11

[17]: plt.scatter(samples[-1, :, 0], samples[-1, :, 1])
plt.show()

12

	Introduction to score-based generative models
	Preamble: negative impacts

	Score-based generative models: key equations
	Score-based generative models: a simple JAX implementation
	Setting up the environment
	Python imports
	Generate samples from \mu_\text{data}
	Time discretization
	Some helper functions
	Initialize the neural network
	Initialize the optimizer
	Loss function and Update step

	Neural network training
	Sampling from the reverse SDE with the score s_\theta(x,t)

